File size: 4,475 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""This script is to load 3D face model for Deep3DFaceRecon_pytorch
"""

import numpy as np
from PIL import Image
from scipy.io import loadmat, savemat
from array import array
import os.path as osp

# load expression basis
def LoadExpBasis(bfm_folder='BFM'):
    n_vertex = 53215
    Expbin = open(osp.join(bfm_folder, 'Exp_Pca.bin'), 'rb')
    exp_dim = array('i')
    exp_dim.fromfile(Expbin, 1)
    expMU = array('f')
    expPC = array('f')
    expMU.fromfile(Expbin, 3*n_vertex)
    expPC.fromfile(Expbin, 3*exp_dim[0]*n_vertex)
    Expbin.close()

    expPC = np.array(expPC)
    expPC = np.reshape(expPC, [exp_dim[0], -1])
    expPC = np.transpose(expPC)

    expEV = np.loadtxt(osp.join(bfm_folder, 'std_exp.txt'))

    return expPC, expEV


# transfer original BFM09 to our face model
def transferBFM09(bfm_folder='BFM'):
    print('Transfer BFM09 to BFM_model_front......')
    original_BFM = loadmat(osp.join(bfm_folder, '01_MorphableModel.mat'))
    shapePC = original_BFM['shapePC']  # shape basis
    shapeEV = original_BFM['shapeEV']  # corresponding eigen value
    shapeMU = original_BFM['shapeMU']  # mean face
    texPC = original_BFM['texPC']  # texture basis
    texEV = original_BFM['texEV']  # eigen value
    texMU = original_BFM['texMU']  # mean texture

    expPC, expEV = LoadExpBasis(bfm_folder)

    # transfer BFM09 to our face model

    idBase = shapePC*np.reshape(shapeEV, [-1, 199])
    idBase = idBase/1e5  # unify the scale to decimeter
    idBase = idBase[:, :80]  # use only first 80 basis

    exBase = expPC*np.reshape(expEV, [-1, 79])
    exBase = exBase/1e5  # unify the scale to decimeter
    exBase = exBase[:, :64]  # use only first 64 basis

    texBase = texPC*np.reshape(texEV, [-1, 199])
    texBase = texBase[:, :80]  # use only first 80 basis

    # our face model is cropped along face landmarks and contains only 35709 vertex.
    # original BFM09 contains 53490 vertex, and expression basis provided by Guo et al. contains 53215 vertex.
    # thus we select corresponding vertex to get our face model.

    index_exp = loadmat(osp.join(bfm_folder, 'BFM_front_idx.mat'))
    index_exp = index_exp['idx'].astype(np.int32) - 1  # starts from 0 (to 53215)

    index_shape = loadmat(osp.join(bfm_folder, 'BFM_exp_idx.mat'))
    index_shape = index_shape['trimIndex'].astype(
        np.int32) - 1  # starts from 0 (to 53490)
    index_shape = index_shape[index_exp]

    idBase = np.reshape(idBase, [-1, 3, 80])
    idBase = idBase[index_shape, :, :]
    idBase = np.reshape(idBase, [-1, 80])

    texBase = np.reshape(texBase, [-1, 3, 80])
    texBase = texBase[index_shape, :, :]
    texBase = np.reshape(texBase, [-1, 80])

    exBase = np.reshape(exBase, [-1, 3, 64])
    exBase = exBase[index_exp, :, :]
    exBase = np.reshape(exBase, [-1, 64])

    meanshape = np.reshape(shapeMU, [-1, 3])/1e5
    meanshape = meanshape[index_shape, :]
    meanshape = np.reshape(meanshape, [1, -1])

    meantex = np.reshape(texMU, [-1, 3])
    meantex = meantex[index_shape, :]
    meantex = np.reshape(meantex, [1, -1])

    # other info contains triangles, region used for computing photometric loss,
    # region used for skin texture regularization, and 68 landmarks index etc.
    other_info = loadmat(osp.join(bfm_folder, 'facemodel_info.mat'))
    frontmask2_idx = other_info['frontmask2_idx']
    skinmask = other_info['skinmask']
    keypoints = other_info['keypoints']
    point_buf = other_info['point_buf']
    tri = other_info['tri']
    tri_mask2 = other_info['tri_mask2']

    # save our face model
    savemat(osp.join(bfm_folder, 'BFM_model_front.mat'), {'meanshape': meanshape, 'meantex': meantex, 'idBase': idBase, 'exBase': exBase, 'texBase': texBase,
            'tri': tri, 'point_buf': point_buf, 'tri_mask2': tri_mask2, 'keypoints': keypoints, 'frontmask2_idx': frontmask2_idx, 'skinmask': skinmask})


# load landmarks for standard face, which is used for image preprocessing
def load_lm3d(bfm_folder):

    Lm3D = loadmat(osp.join(bfm_folder, 'similarity_Lm3D_all.mat'))
    Lm3D = Lm3D['lm']

    # calculate 5 facial landmarks using 68 landmarks
    lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1
    Lm3D = np.stack([Lm3D[lm_idx[0], :], np.mean(Lm3D[lm_idx[[1, 2]], :], 0), np.mean(
        Lm3D[lm_idx[[3, 4]], :], 0), Lm3D[lm_idx[5], :], Lm3D[lm_idx[6], :]], axis=0)
    Lm3D = Lm3D[[1, 2, 0, 3, 4], :]

    return Lm3D


if __name__ == '__main__':
    transferBFM09(bfm_folder='deep_3drecon/BFM')