File size: 32,214 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
import os
import sys
sys.path.append('./')
import torch
import torch.nn.functional as F
import torchshow as ts
import librosa
import random
import time
import numpy as np
import importlib
import tqdm
import copy
import cv2
import math
# common utils
from utils.commons.hparams import hparams, set_hparams
from utils.commons.tensor_utils import move_to_cuda, convert_to_tensor
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint
# 3DMM-related utils
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel
from data_util.face3d_helper import Face3DHelper
from data_gen.utils.process_image.fit_3dmm_landmark import fit_3dmm_for_a_image
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video
from deep_3drecon.secc_renderer import SECC_Renderer
from data_gen.eg3d.convert_to_eg3d_convention import get_eg3d_convention_camera_pose_intrinsic
from data_gen.utils.process_image.extract_lm2d import extract_lms_mediapipe_job
# Face Parsing
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter
from data_gen.utils.process_video.extract_segment_imgs import inpaint_torso_job, extract_background
# other inference utils
from inference.infer_utils import mirror_index, load_img_to_512_hwc_array, load_img_to_normalized_512_bchw_tensor
from inference.infer_utils import smooth_camera_sequence, smooth_features_xd
from inference.edit_secc import blink_eye_for_secc
def read_first_frame_from_a_video(vid_name):
frames = []
cap = cv2.VideoCapture(vid_name)
ret, frame_bgr = cap.read()
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
return frame_rgb
def analyze_weights_img(gen_output):
img_raw = gen_output['image_raw']
mask_005_to_03 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.3).repeat([1,3,1,1])
mask_005_to_05 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.5).repeat([1,3,1,1])
mask_005_to_07 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.7).repeat([1,3,1,1])
mask_005_to_09 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.9).repeat([1,3,1,1])
mask_005_to_10 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<1.0).repeat([1,3,1,1])
img_raw_005_to_03 = img_raw.clone()
img_raw_005_to_03[~mask_005_to_03] = -1
img_raw_005_to_05 = img_raw.clone()
img_raw_005_to_05[~mask_005_to_05] = -1
img_raw_005_to_07 = img_raw.clone()
img_raw_005_to_07[~mask_005_to_07] = -1
img_raw_005_to_09 = img_raw.clone()
img_raw_005_to_09[~mask_005_to_09] = -1
img_raw_005_to_10 = img_raw.clone()
img_raw_005_to_10[~mask_005_to_10] = -1
ts.save([img_raw_005_to_03[0], img_raw_005_to_05[0], img_raw_005_to_07[0], img_raw_005_to_09[0], img_raw_005_to_10[0]])
def cal_face_area_percent(img_name):
img = cv2.resize(cv2.imread(img_name)[:,:,::-1], (512,512))
lm478 = extract_lms_mediapipe_job(img) / 512
min_x = lm478[:,0].min()
max_x = lm478[:,0].max()
min_y = lm478[:,1].min()
max_y = lm478[:,1].max()
area = (max_x - min_x) * (max_y - min_y)
return area
def crop_img_on_face_area_percent(img_name, out_name='temp/cropped_src_img.png', min_face_area_percent=0.2):
try:
os.makedirs(os.path.dirname(out_name), exist_ok=True)
except: pass
face_area_percent = cal_face_area_percent(img_name)
if face_area_percent >= min_face_area_percent:
print(f"face area percent {face_area_percent} larger than threshold {min_face_area_percent}, directly use the input image...")
cmd = f"cp {img_name} {out_name}"
os.system(cmd)
return out_name
else:
print(f"face area percent {face_area_percent} smaller than threshold {min_face_area_percent}, crop the input image...")
img = cv2.resize(cv2.imread(img_name)[:,:,::-1], (512,512))
lm478 = extract_lms_mediapipe_job(img).astype(int)
min_x = lm478[:,0].min()
max_x = lm478[:,0].max()
min_y = lm478[:,1].min()
max_y = lm478[:,1].max()
face_area = (max_x - min_x) * (max_y - min_y)
target_total_area = face_area / min_face_area_percent
target_hw = int(target_total_area**0.5)
center_x, center_y = (min_x+max_x)/2, (min_y+max_y)/2
shrink_pixels = 2 * max(-(center_x - target_hw/2), center_x + target_hw/2 - 512, -(center_y - target_hw/2), center_y + target_hw/2-512)
shrink_pixels = max(0, shrink_pixels)
hw = math.floor(target_hw - shrink_pixels)
new_min_x = int(center_x - hw/2)
new_max_x = int(center_x + hw/2)
new_min_y = int(center_y - hw/2)
new_max_y = int(center_y + hw/2)
img = img[new_min_y:new_max_y, new_min_x:new_max_x]
img = cv2.resize(img, (512, 512))
cv2.imwrite(out_name, img[:,:,::-1])
return out_name
class GeneFace2Infer:
def __init__(self, audio2secc_dir, head_model_dir, torso_model_dir, device=None, inp=None):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
self.audio2secc_model = self.load_audio2secc(audio2secc_dir)
self.secc2video_model = self.load_secc2video(head_model_dir, torso_model_dir, inp)
self.audio2secc_model.to(device).eval()
self.secc2video_model.to(device).eval()
self.seg_model = MediapipeSegmenter()
self.secc_renderer = SECC_Renderer(512)
self.face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='lm68')
self.mp_face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='mediapipe')
def load_audio2secc(self, audio2secc_dir):
config_name = f"{audio2secc_dir}/config.yaml" if not audio2secc_dir.endswith(".ckpt") else f"{os.path.dirname(audio2secc_dir)}/config.yaml"
set_hparams(f"{config_name}", print_hparams=False)
self.audio2secc_dir = audio2secc_dir
self.audio2secc_hparams = copy.deepcopy(hparams)
from modules.audio2motion.vae import VAEModel, PitchContourVAEModel
if self.audio2secc_hparams['audio_type'] == 'hubert':
audio_in_dim = 1024
elif self.audio2secc_hparams['audio_type'] == 'mfcc':
audio_in_dim = 13
if 'icl' in hparams['task_cls']:
self.use_icl_audio2motion = True
model = InContextAudio2MotionModel(hparams['icl_model_type'], hparams=self.audio2secc_hparams)
else:
self.use_icl_audio2motion = False
if hparams.get("use_pitch", False) is True:
model = PitchContourVAEModel(hparams, in_out_dim=64, audio_in_dim=audio_in_dim)
else:
model = VAEModel(in_out_dim=64, audio_in_dim=audio_in_dim)
load_ckpt(model, f"{audio2secc_dir}", model_name='model', strict=True)
return model
def load_secc2video(self, head_model_dir, torso_model_dir, inp):
if inp is None:
inp = {}
self.head_model_dir = head_model_dir
self.torso_model_dir = torso_model_dir
if torso_model_dir != '':
if torso_model_dir.endswith(".ckpt"):
set_hparams(f"{os.path.dirname(torso_model_dir)}/config.yaml", print_hparams=False)
else:
set_hparams(f"{torso_model_dir}/config.yaml", print_hparams=False)
if inp.get('head_torso_threshold', None) is not None:
hparams['htbsr_head_threshold'] = inp['head_torso_threshold']
self.secc2video_hparams = copy.deepcopy(hparams)
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane_Torso
model = OSAvatarSECC_Img2plane_Torso()
load_ckpt(model, f"{torso_model_dir}", model_name='model', strict=True)
if head_model_dir != '':
print("| Warning: Assigned --torso_ckpt which also contains head, but --head_ckpt is also assigned, skipping the --head_ckpt.")
else:
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane
if head_model_dir.endswith(".ckpt"):
set_hparams(f"{os.path.dirname(head_model_dir)}/config.yaml", print_hparams=False)
else:
set_hparams(f"{head_model_dir}/config.yaml", print_hparams=False)
if inp.get('head_torso_threshold', None) is not None:
hparams['htbsr_head_threshold'] = inp['head_torso_threshold']
self.secc2video_hparams = copy.deepcopy(hparams)
model = OSAvatarSECC_Img2plane()
load_ckpt(model, f"{head_model_dir}", model_name='model', strict=True)
return model
def infer_once(self, inp):
self.inp = inp
samples = self.prepare_batch_from_inp(inp)
seed = inp['seed'] if inp['seed'] is not None else int(time.time())
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
out_name = self.forward_system(samples, inp)
return out_name
def prepare_batch_from_inp(self, inp):
"""
:param inp: {'audio_source_name': (str)}
:return: a dict that contains the condition feature of NeRF
"""
tmp_img_name = 'infer_out/tmp/cropped_src_img.png'
crop_img_on_face_area_percent(inp['src_image_name'], tmp_img_name, min_face_area_percent=inp['min_face_area_percent'])
inp['src_image_name'] = tmp_img_name
sample = {}
# Process Driving Motion
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']:
self.save_wav16k(inp['drv_audio_name'])
if self.audio2secc_hparams['audio_type'] == 'hubert':
hubert = self.get_hubert(self.wav16k_name)
elif self.audio2secc_hparams['audio_type'] == 'mfcc':
hubert = self.get_mfcc(self.wav16k_name) / 100
f0 = self.get_f0(self.wav16k_name)
if f0.shape[0] > len(hubert):
f0 = f0[:len(hubert)]
else:
num_to_pad = len(hubert) - len(f0)
f0 = np.pad(f0, pad_width=((0,num_to_pad), (0,0)))
t_x = hubert.shape[0]
x_mask = torch.ones([1, t_x]).float() # mask for audio frames
y_mask = torch.ones([1, t_x//2]).float() # mask for motion/image frames
sample.update({
'hubert': torch.from_numpy(hubert).float().unsqueeze(0).cuda(),
'f0': torch.from_numpy(f0).float().reshape([1,-1]).cuda(),
'x_mask': x_mask.cuda(),
'y_mask': y_mask.cuda(),
})
sample['blink'] = torch.zeros([1, t_x, 1]).long().cuda()
sample['audio'] = sample['hubert']
sample['eye_amp'] = torch.ones([1, 1]).cuda() * 1.0
sample['mouth_amp'] = torch.ones([1, 1]).cuda() * inp['mouth_amp']
elif inp['drv_audio_name'][-4:] in ['.mp4']:
drv_motion_coeff_dict = fit_3dmm_for_a_video(inp['drv_audio_name'], save=False)
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict)
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2
self.drv_motion_coeff_dict = drv_motion_coeff_dict
elif inp['drv_audio_name'][-4:] in ['.npy']:
drv_motion_coeff_dict = np.load(inp['drv_audio_name'], allow_pickle=True).tolist()
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict)
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2
self.drv_motion_coeff_dict = drv_motion_coeff_dict
# Face Parsing
image_name = inp['src_image_name']
if image_name.endswith(".mp4"):
img = read_first_frame_from_a_video(image_name)
image_name = inp['src_image_name'] = image_name[:-4] + '.png'
cv2.imwrite(image_name, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
sample['ref_gt_img'] = load_img_to_normalized_512_bchw_tensor(image_name).cuda()
img = load_img_to_512_hwc_array(image_name)
segmap = self.seg_model._cal_seg_map(img)
sample['segmap'] = torch.tensor(segmap).float().unsqueeze(0).cuda()
head_img = self.seg_model._seg_out_img_with_segmap(img, segmap, mode='head')[0]
sample['ref_head_img'] = ((torch.tensor(head_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w]
ts.save(sample['ref_head_img'])
inpaint_torso_img, _, _, _ = inpaint_torso_job(img, segmap)
sample['ref_torso_img'] = ((torch.tensor(inpaint_torso_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w]
if inp['bg_image_name'] == '':
bg_img = extract_background([img], [segmap], 'knn')
else:
bg_img = cv2.imread(inp['bg_image_name'])
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
bg_img = cv2.resize(bg_img, (512,512))
sample['bg_img'] = ((torch.tensor(bg_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w]
# 3DMM, get identity code and camera pose
coeff_dict = fit_3dmm_for_a_image(image_name, save=False)
assert coeff_dict is not None
src_id = torch.tensor(coeff_dict['id']).reshape([1,80]).cuda()
src_exp = torch.tensor(coeff_dict['exp']).reshape([1,64]).cuda()
src_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda()
src_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda()
sample['id'] = src_id.repeat([t_x//2,1])
# get the src_kp for torso model
src_kp = self.face3d_helper.reconstruct_lm2d(src_id, src_exp, src_euler, src_trans) # [1, 68, 2]
src_kp = (src_kp-0.5) / 0.5 # rescale to -1~1
sample['src_kp'] = torch.clamp(src_kp, -1, 1).repeat([t_x//2,1,1])
# get camera pose file
# random.seed(time.time())
inp['drv_pose_name'] = inp['drv_pose_name']
print(f"| To extract pose from {inp['drv_pose_name']}")
# extract camera pose
if inp['drv_pose_name'] == 'static':
sample['euler'] = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda().repeat([t_x//2,1]) # default static pose
sample['trans'] = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda().repeat([t_x//2,1])
else: # from file
if inp['drv_pose_name'].endswith('.mp4'):
# extract coeff from video
drv_pose_coeff_dict = fit_3dmm_for_a_video(inp['drv_pose_name'], save=False)
else:
# load from npy
drv_pose_coeff_dict = np.load(inp['drv_pose_name'], allow_pickle=True).tolist()
print(f"| Extracted pose from {inp['drv_pose_name']}")
eulers = convert_to_tensor(drv_pose_coeff_dict['euler']).reshape([-1,3]).cuda()
trans = convert_to_tensor(drv_pose_coeff_dict['trans']).reshape([-1,3]).cuda()
len_pose = len(eulers)
index_lst = [mirror_index(i, len_pose) for i in range(t_x//2)]
sample['euler'] = eulers[index_lst]
sample['trans'] = trans[index_lst]
# fix the z axis
sample['trans'][:, -1] = sample['trans'][0:1, -1].repeat([sample['trans'].shape[0]])
# mapping to the init pose
print(inp)
if inp.get("map_to_init_pose", 'True') in ['True', True]:
diff_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda() - sample['euler'][0:1]
sample['euler'] = sample['euler'] + diff_euler
diff_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda() - sample['trans'][0:1]
sample['trans'] = sample['trans'] + diff_trans
# prepare camera
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':sample['euler'].cpu(), 'trans':sample['trans'].cpu()})
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
# smooth camera
camera_smo_ksize = 7
camera = np.concatenate([c2w.reshape([-1,16]), intrinsics.reshape([-1,9])], axis=-1)
camera = smooth_camera_sequence(camera, kernel_size=camera_smo_ksize) # [T, 25]
camera = torch.tensor(camera).cuda().float()
sample['camera'] = camera
return sample
@torch.no_grad()
def get_hubert(self, wav16k_name):
from data_gen.utils.process_audio.extract_hubert import get_hubert_from_16k_wav
hubert = get_hubert_from_16k_wav(wav16k_name).detach().numpy()
len_mel = hubert.shape[0]
x_multiply = 8
if len_mel % x_multiply == 0:
num_to_pad = 0
else:
num_to_pad = x_multiply - len_mel % x_multiply
hubert = np.pad(hubert, pad_width=((0,num_to_pad), (0,0)))
return hubert
def get_mfcc(self, wav16k_name):
from utils.audio import librosa_wav2mfcc
hparams['fft_size'] = 1200
hparams['win_size'] = 1200
hparams['hop_size'] = 480
hparams['audio_num_mel_bins'] = 80
hparams['fmin'] = 80
hparams['fmax'] = 12000
hparams['audio_sample_rate'] = 24000
mfcc = librosa_wav2mfcc(wav16k_name,
fft_size=hparams['fft_size'],
hop_size=hparams['hop_size'],
win_length=hparams['win_size'],
num_mels=hparams['audio_num_mel_bins'],
fmin=hparams['fmin'],
fmax=hparams['fmax'],
sample_rate=hparams['audio_sample_rate'],
center=True)
mfcc = np.array(mfcc).reshape([-1, 13])
len_mel = mfcc.shape[0]
x_multiply = 8
if len_mel % x_multiply == 0:
num_to_pad = 0
else:
num_to_pad = x_multiply - len_mel % x_multiply
mfcc = np.pad(mfcc, pad_width=((0,num_to_pad), (0,0)))
return mfcc
@torch.no_grad()
def forward_audio2secc(self, batch, inp=None):
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']:
# audio-to-exp
ret = {}
pred = self.audio2secc_model.forward(batch, ret=ret,train=False, temperature=inp['temperature'],)
print("| audio-to-motion finished")
if pred.shape[-1] == 144:
id = ret['pred'][0][:,:80]
exp = ret['pred'][0][:,80:]
else:
id = batch['id']
exp = ret['pred'][0]
if len(id) < len(exp): # happens when use ICL
id = torch.cat([id, id[0].unsqueeze(0).repeat([len(exp)-len(id),1])])
batch['id'] = id
batch['exp'] = exp
else:
drv_motion_coeff_dict = self.drv_motion_coeff_dict
batch['exp'] = torch.FloatTensor(drv_motion_coeff_dict['exp']).cuda()
batch = self.get_driving_motion(batch['id'], batch['exp'], batch['euler'], batch['trans'], batch, inp)
if self.use_icl_audio2motion:
self.audio2secc_model.empty_context()
return batch
@torch.no_grad()
def get_driving_motion(self, id, exp, euler, trans, batch, inp):
zero_eulers = torch.zeros([id.shape[0], 3]).to(id.device)
zero_trans = torch.zeros([id.shape[0], 3]).to(exp.device)
# render the secc given the id,exp
with torch.no_grad():
chunk_size = 50
drv_secc_color_lst = []
num_iters = len(id)//chunk_size if len(id)%chunk_size == 0 else len(id)//chunk_size+1
for i in tqdm.trange(num_iters, desc="rendering drv secc"):
torch.cuda.empty_cache()
face_mask, drv_secc_color = self.secc_renderer(id[i*chunk_size:(i+1)*chunk_size], exp[i*chunk_size:(i+1)*chunk_size], zero_eulers[i*chunk_size:(i+1)*chunk_size], zero_trans[i*chunk_size:(i+1)*chunk_size])
drv_secc_color_lst.append(drv_secc_color.cpu())
drv_secc_colors = torch.cat(drv_secc_color_lst, dim=0)
_, src_secc_color = self.secc_renderer(id[0:1], exp[0:1], zero_eulers[0:1], zero_trans[0:1])
_, cano_secc_color = self.secc_renderer(id[0:1], exp[0:1]*0, zero_eulers[0:1], zero_trans[0:1])
batch['drv_secc'] = drv_secc_colors.cuda()
batch['src_secc'] = src_secc_color.cuda()
batch['cano_secc'] = cano_secc_color.cuda()
# blinking secc
if inp['blink_mode'] == 'period':
period = 5 # second
for i in tqdm.trange(len(drv_secc_colors),desc="blinking secc"):
if i % (25*period) == 0:
blink_dur_frames = random.randint(8, 12)
for offset in range(blink_dur_frames):
j = offset + i
if j >= len(drv_secc_colors)-1: break
def blink_percent_fn(t, T):
return -4/T**2 * t**2 + 4/T * t
blink_percent = blink_percent_fn(offset, blink_dur_frames)
secc = batch['drv_secc'][j]
out_secc = blink_eye_for_secc(secc, blink_percent)
out_secc = out_secc.cuda()
batch['drv_secc'][j] = out_secc
# get the drv_kp for torso model, using the transformed trajectory
drv_kp = self.face3d_helper.reconstruct_lm2d(id, exp, euler, trans) # [T, 68, 2]
drv_kp = (drv_kp-0.5) / 0.5 # rescale to -1~1
batch['drv_kp'] = torch.clamp(drv_kp, -1, 1)
return batch
@torch.no_grad()
def forward_secc2video(self, batch, inp=None):
num_frames = len(batch['drv_secc'])
camera = batch['camera']
src_kps = batch['src_kp']
drv_kps = batch['drv_kp']
cano_secc_color = batch['cano_secc']
src_secc_color = batch['src_secc']
drv_secc_colors = batch['drv_secc']
ref_img_gt = batch['ref_gt_img']
ref_img_head = batch['ref_head_img']
ref_torso_img = batch['ref_torso_img']
bg_img = batch['bg_img']
segmap = batch['segmap']
# smooth torso drv_kp
torso_smo_ksize = 7
drv_kps = smooth_features_xd(drv_kps.reshape([-1, 68*2]), kernel_size=torso_smo_ksize).reshape([-1, 68, 2])
# forward renderer
if inp['low_memory_usage']:
# save memory, when one image is rendered, write it into video
import imageio
debug_name = 'demo.mp4'
writer = imageio.get_writer(debug_name, fps=25, format='FFMPEG', codec='h264')
with torch.no_grad():
for i in tqdm.trange(num_frames, desc="Real3D-Portrait is rendering frames"):
kp_src = torch.cat([src_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(src_kps.device)],dim=-1)
kp_drv = torch.cat([drv_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(drv_kps.device)],dim=-1)
cond={'cond_cano': cano_secc_color,'cond_src': src_secc_color, 'cond_tgt': drv_secc_colors[i:i+1].cuda(),
'ref_torso_img': ref_torso_img, 'bg_img': bg_img, 'segmap': segmap,
'kp_s': kp_src, 'kp_d': kp_drv}
if i == 0:
gen_output = self.secc2video_model.forward(img=ref_img_head, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=True, use_cached_backbone=False)
else:
gen_output = self.secc2video_model.forward(img=ref_img_head, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=False, use_cached_backbone=True)
img = ((gen_output['image']+1)/2 * 255.).permute(0, 2, 3, 1)[0].int().cpu().numpy().astype(np.uint8)
writer.append_data(img)
writer.close()
else:
img_raw_lst = []
img_lst = []
depth_img_lst = []
with torch.no_grad():
for i in tqdm.trange(num_frames, desc="Real3D-Portrait is rendering frames"):
kp_src = torch.cat([src_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(src_kps.device)],dim=-1)
kp_drv = torch.cat([drv_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(drv_kps.device)],dim=-1)
cond={'cond_cano': cano_secc_color,'cond_src': src_secc_color, 'cond_tgt': drv_secc_colors[i:i+1].cuda(),
'ref_torso_img': ref_torso_img, 'bg_img': bg_img, 'segmap': segmap,
'kp_s': kp_src, 'kp_d': kp_drv}
if i == 0:
gen_output = self.secc2video_model.forward(img=ref_img_head, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=True, use_cached_backbone=False)
else:
gen_output = self.secc2video_model.forward(img=ref_img_head, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=False, use_cached_backbone=True)
img_lst.append(gen_output['image'])
img_raw_lst.append(gen_output['image_raw'])
depth_img_lst.append(gen_output['image_depth'])
# save demo video
depth_imgs = torch.cat(depth_img_lst)
imgs = torch.cat(img_lst)
imgs_raw = torch.cat(img_raw_lst)
secc_img = torch.cat([torch.nn.functional.interpolate(drv_secc_colors[i:i+1], (512,512)) for i in range(num_frames)])
if inp['out_mode'] == 'concat_debug':
secc_img = secc_img.cpu()
secc_img = ((secc_img + 1) * 127.5).permute(0, 2, 3, 1).int().numpy()
depth_img = F.interpolate(depth_imgs, (512,512)).cpu()
depth_img = depth_img.repeat([1,3,1,1])
depth_img = (depth_img - depth_img.min()) / (depth_img.max() - depth_img.min())
depth_img = depth_img * 2 - 1
depth_img = depth_img.clamp(-1,1)
secc_img = secc_img / 127.5 - 1
secc_img = torch.from_numpy(secc_img).permute(0, 3, 1, 2)
imgs = torch.cat([ref_img_gt.repeat([imgs.shape[0],1,1,1]).cpu(), secc_img, F.interpolate(imgs_raw, (512,512)).cpu(), depth_img, imgs.cpu()], dim=-1)
elif inp['out_mode'] == 'final':
imgs = imgs.cpu()
elif inp['out_mode'] == 'debug':
raise NotImplementedError("to do: save separate videos")
imgs = imgs.clamp(-1,1)
import imageio
debug_name = 'demo.mp4'
out_imgs = ((imgs.permute(0, 2, 3, 1) + 1)/2 * 255).int().cpu().numpy().astype(np.uint8)
writer = imageio.get_writer(debug_name, fps=25, format='FFMPEG', codec='h264')
for i in tqdm.trange(len(out_imgs), desc="Imageio is saving video"):
writer.append_data(out_imgs[i])
writer.close()
# add audio track
out_fname = 'infer_out/tmp/' + os.path.basename(inp['src_image_name'])[:-4] + '_' + os.path.basename(inp['drv_pose_name'])[:-4] + '.mp4' if inp['out_name'] == '' else inp['out_name']
try:
os.makedirs(os.path.dirname(out_fname), exist_ok=True)
except: pass
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']:
os.system(f"ffmpeg -i {debug_name} -i {self.wav16k_name} -y -v quiet -shortest {out_fname}")
os.system(f"rm {debug_name}")
os.system(f"rm {self.wav16k_name}")
else:
ret = os.system(f"ffmpeg -i {debug_name} -i {inp['drv_audio_name']} -map 0:v -map 1:a -y -v quiet -shortest {out_fname}")
if ret != 0: # 没有成功从drv_audio_name里面提取到音频, 则直接输出无音频轨道的纯视频
os.system(f"mv {debug_name} {out_fname}")
print(f"Saved at {out_fname}")
return out_fname
@torch.no_grad()
def forward_system(self, batch, inp):
self.forward_audio2secc(batch, inp)
out_fname = self.forward_secc2video(batch, inp)
return out_fname
@classmethod
def example_run(cls, inp=None):
inp_tmp = {
'drv_audio_name': 'data/raw/val_wavs/zozo.wav',
'src_image_name': 'data/raw/val_imgs/Macron.png'
}
if inp is not None:
inp_tmp.update(inp)
inp = inp_tmp
infer_instance = cls(inp['a2m_ckpt'], inp['head_ckpt'], inp['torso_ckpt'], inp=inp)
infer_instance.infer_once(inp)
##############
# IO-related
##############
def save_wav16k(self, audio_name):
supported_types = ('.wav', '.mp3', '.mp4', '.avi')
assert audio_name.endswith(supported_types), f"Now we only support {','.join(supported_types)} as audio source!"
wav16k_name = audio_name[:-4] + '_16k.wav'
self.wav16k_name = wav16k_name
extract_wav_cmd = f"ffmpeg -i {audio_name} -f wav -ar 16000 -v quiet -y {wav16k_name} -y"
os.system(extract_wav_cmd)
print(f"Extracted wav file (16khz) from {audio_name} to {wav16k_name}.")
def get_f0(self, wav16k_name):
from data_gen.utils.process_audio.extract_mel_f0 import extract_mel_from_fname, extract_f0_from_wav_and_mel
wav, mel = extract_mel_from_fname(self.wav16k_name)
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel)
f0 = f0.reshape([-1,1])
return f0
if __name__ == '__main__':
import argparse, glob, tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--a2m_ckpt", default='checkpoints/240210_real3dportrait_orig/audio2secc_vae', type=str)
parser.add_argument("--head_ckpt", default='', type=str)
parser.add_argument("--torso_ckpt", default='checkpoints/240210_real3dportrait_orig/secc2plane_torso_orig', type=str)
parser.add_argument("--src_img", default='data/raw/examples/Macron.png', type=str) # data/raw/examples/Macron.png
parser.add_argument("--bg_img", default='', type=str) # data/raw/examples/bg.png
parser.add_argument("--drv_aud", default='data/raw/examples/Obama_5s.wav', type=str) # data/raw/examples/Obama_5s.wav
parser.add_argument("--drv_pose", default='data/raw/examples/May_5s.mp4', type=str) # data/raw/examples/May_5s.mp4
parser.add_argument("--blink_mode", default='period', type=str) # none | period
parser.add_argument("--temperature", default=0.2, type=float) # sampling temperature in audio2motion, higher -> more diverse, less accurate
parser.add_argument("--mouth_amp", default=0.45, type=float) # scale of predicted mouth, enabled in audio-driven
parser.add_argument("--head_torso_threshold", default=None, type=float, help="0.1~1.0, turn up this value if the hair is translucent")
parser.add_argument("--out_name", default='') # output filename
parser.add_argument("--out_mode", default='concat_debug') # final: only output talking head video; concat_debug: talking head with internel features
parser.add_argument("--map_to_init_pose", default='True') # whether to map the pose of first frame to source image
parser.add_argument("--seed", default=None, type=int) # random seed, default None to use time.time()
parser.add_argument("--min_face_area_percent", default=0.2, type=float) # scale of predicted mouth, enabled in audio-driven
parser.add_argument("--low_memory_usage", action='store_true', help='write img to video upon generated, leads to slower fps, but use less memory')
args = parser.parse_args()
inp = {
'a2m_ckpt': args.a2m_ckpt,
'head_ckpt': args.head_ckpt,
'torso_ckpt': args.torso_ckpt,
'src_image_name': args.src_img,
'bg_image_name': args.bg_img,
'drv_audio_name': args.drv_aud,
'drv_pose_name': args.drv_pose,
'blink_mode': args.blink_mode,
'temperature': args.temperature,
'mouth_amp': args.mouth_amp,
'out_name': args.out_name,
'out_mode': args.out_mode,
'map_to_init_pose': args.map_to_init_pose,
'head_torso_threshold': args.head_torso_threshold,
'seed': args.seed,
'min_face_area_percent': args.min_face_area_percent,
'low_memory_usage': args.low_memory_usage,
}
GeneFace2Infer.example_run(inp) |