File size: 12,890 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules.audio2motion.cnn_models import LambdaLayer


class Discriminator1DFactory(nn.Module):
    def __init__(self, time_length, kernel_size=3, in_dim=1, hidden_size=128, norm_type='bn'):
        super(Discriminator1DFactory, self).__init__()
        padding = kernel_size // 2

        def discriminator_block(in_filters, out_filters, first=False):
            """
            Input: (B, c, T)
            Output:(B, c, T//2)
            """
            conv = nn.Conv1d(in_filters, out_filters, kernel_size, 2, padding)
            block = [
                conv,  # padding = kernel//2
                nn.LeakyReLU(0.2, inplace=True),
                nn.Dropout2d(0.25)
            ]
            if norm_type == 'bn' and not first:
                block.append(nn.BatchNorm1d(out_filters, 0.8))
            if norm_type == 'in' and not first:
                block.append(nn.InstanceNorm1d(out_filters, affine=True))
            block = nn.Sequential(*block)
            return block

        if time_length >= 8:
            self.model = nn.ModuleList([
                discriminator_block(in_dim, hidden_size, first=True),
                discriminator_block(hidden_size, hidden_size),
                discriminator_block(hidden_size, hidden_size),
            ])
            ds_size = time_length // (2 ** 3)
        elif time_length == 3:
            self.model = nn.ModuleList([
                nn.Sequential(*[
                    nn.Conv1d(in_dim, hidden_size, 3, 1, 0),
                    nn.LeakyReLU(0.2, inplace=True),
                    nn.Dropout2d(0.25),
                    nn.Conv1d(hidden_size, hidden_size, 1, 1, 0),
                    nn.LeakyReLU(0.2, inplace=True),
                    nn.Dropout2d(0.25),
                    nn.BatchNorm1d(hidden_size, 0.8),
                    nn.Conv1d(hidden_size, hidden_size, 1, 1, 0),
                    nn.LeakyReLU(0.2, inplace=True),
                    nn.Dropout2d(0.25),
                    nn.BatchNorm1d(hidden_size, 0.8)
                ])
            ])
            ds_size = 1
        elif time_length == 1:
            self.model = nn.ModuleList([
                nn.Sequential(*[
                    nn.Linear(in_dim, hidden_size),
                    nn.LeakyReLU(0.2, inplace=True),
                    nn.Dropout2d(0.25),
                    nn.Linear(hidden_size, hidden_size),
                    nn.LeakyReLU(0.2, inplace=True),
                    nn.Dropout2d(0.25),
                ])
            ])
            ds_size = 1

        self.adv_layer = nn.Linear(hidden_size * ds_size, 1)

    def forward(self, x):
        """

        :param x: [B, C, T]
        :return: validity: [B, 1], h: List of hiddens
        """
        h = []
        if x.shape[-1] == 1:
            x = x.squeeze(-1)
        for l in self.model:
            x = l(x)
            h.append(x)
        if x.ndim == 2:
            b, ct = x.shape
            use_sigmoid = True
        else:
            b, c, t = x.shape
            ct = c * t
            use_sigmoid = False
        x = x.view(b, ct)
        validity = self.adv_layer(x)  # [B, 1]
        if use_sigmoid:
            validity = torch.sigmoid(validity)
        return validity, h


class CosineDiscriminator1DFactory(nn.Module):
    def __init__(self, time_length, kernel_size=3, in_dim=1, hidden_size=128, norm_type='bn'):
        super().__init__()
        padding = kernel_size // 2

        def discriminator_block(in_filters, out_filters, first=False):
            """
            Input: (B, c, T)
            Output:(B, c, T//2)
            """
            conv = nn.Conv1d(in_filters, out_filters, kernel_size, 2, padding)
            block = [
                conv,  # padding = kernel//2
                nn.LeakyReLU(0.2, inplace=True),
                nn.Dropout2d(0.25)
            ]
            if norm_type == 'bn' and not first:
                block.append(nn.BatchNorm1d(out_filters, 0.8))
            if norm_type == 'in' and not first:
                block.append(nn.InstanceNorm1d(out_filters, affine=True))
            block = nn.Sequential(*block)
            return block

        self.model1 = nn.ModuleList([
            discriminator_block(in_dim, hidden_size, first=True),
            discriminator_block(hidden_size, hidden_size),
            discriminator_block(hidden_size, hidden_size),
        ])

        self.model2 = nn.ModuleList([
            discriminator_block(in_dim, hidden_size, first=True),
            discriminator_block(hidden_size, hidden_size),
            discriminator_block(hidden_size, hidden_size),
        ])

        self.relu = nn.ReLU()
    def forward(self, x1, x2):
        """

        :param x1: [B, C, T]
        :param x2: [B, C, T]
        :return: validity: [B, 1], h: List of hiddens
        """
        h1, h2 = [], []
        for l in self.model1:
            x1 = l(x1)
            h1.append(x1)
        for l in self.model2:
            x2 = l(x2)
            h2.append(x1)
        b,c,t = x1.shape
        x1 = x1.view(b, c*t)
        x2 = x2.view(b, c*t)
        x1 = self.relu(x1)
        x2 = self.relu(x2)
        # x1 = F.normalize(x1, p=2, dim=1)
        # x2 = F.normalize(x2, p=2, dim=1)
        validity = F.cosine_similarity(x1, x2)    
        return validity, [h1,h2]


class MultiWindowDiscriminator(nn.Module):
    def __init__(self, time_lengths, cond_dim=80, in_dim=64, kernel_size=3, hidden_size=128, disc_type='standard', norm_type='bn', reduction='sum'):
        super(MultiWindowDiscriminator, self).__init__()
        self.win_lengths = time_lengths
        self.reduction = reduction
        self.disc_type = disc_type

        if cond_dim > 0:
            self.use_cond = True
            self.cond_proj_layers = nn.ModuleList()
            self.in_proj_layers = nn.ModuleList()
        else:
            self.use_cond = False

        self.conv_layers = nn.ModuleList()
        for time_length in time_lengths:
            conv_layer = [
                Discriminator1DFactory(
                    time_length, kernel_size, in_dim=64, hidden_size=hidden_size,
                    norm_type=norm_type) if self.disc_type == 'standard' 
                else CosineDiscriminator1DFactory(time_length, kernel_size, in_dim=64, 
                    hidden_size=hidden_size,norm_type=norm_type)
            ]
            self.conv_layers += conv_layer
            if self.use_cond:
                self.cond_proj_layers.append(nn.Linear(cond_dim, 64))
                self.in_proj_layers.append(nn.Linear(in_dim, 64))
    
    def clip(self, x, cond, x_len, win_length, start_frames=None):
        '''Ramdom clip x to win_length.
        Args:
            x (tensor) : (B,  T, C).
            cond (tensor) : (B, T, H).
            x_len (tensor) : (B,).
            win_length (int): target clip length

        Returns:
            (tensor) : (B, c_in, win_length, n_bins).

        '''
        clip_from_same_frame = start_frames is None
        T_start = 0
        # T_end = x_len.max() - win_length
        T_end = x_len.min() - win_length
        if T_end < 0:
            return None, None, start_frames
        T_end = T_end.item()
        if start_frames is None:
            start_frame = np.random.randint(low=T_start, high=T_end + 1)
            start_frames = [start_frame] * x.size(0)
        else:
            start_frame = start_frames[0]


        if clip_from_same_frame:
            x_batch = x[:, start_frame: start_frame + win_length, :]
            c_batch = cond[:, start_frame: start_frame + win_length, :] if cond is not None else None
        else:
            x_lst = []
            c_lst = []
            for i, start_frame in enumerate(start_frames):
                x_lst.append(x[i, start_frame: start_frame + win_length, :])
                if cond is not None:
                    c_lst.append(cond[i, start_frame: start_frame + win_length, :])
            x_batch = torch.stack(x_lst, dim=0)
            if cond is None:
                c_batch = None
            else:
                c_batch = torch.stack(c_lst, dim=0)
        return x_batch, c_batch, start_frames

    def forward(self, x, x_len, cond=None, start_frames_wins=None):
        '''
        Args:
            x (tensor): input mel, (B, T, C).
            x_length (tensor): len of per mel. (B,).

        Returns:
            tensor : (B).
        '''
        validity = []
        if start_frames_wins is None:
            start_frames_wins = [None] * len(self.conv_layers)
        h = []
        for i, start_frames in zip(range(len(self.conv_layers)), start_frames_wins):
            x_clip, c_clip, start_frames = self.clip(
                x, cond, x_len, self.win_lengths[i], start_frames)  # (B, win_length, C)
            start_frames_wins[i] = start_frames
            if x_clip is None:
                continue
            if self.disc_type == 'standard':
                if self.use_cond:
                    x_clip = self.in_proj_layers[i](x_clip)  # (B, T, C)
                    c_clip = self.cond_proj_layers[i](c_clip)
                    x_clip = x_clip + c_clip
                validity_pred, h_ = self.conv_layers[i](x_clip.transpose(1,2))
            elif self.disc_type == 'cosine':
                assert self.use_cond is True
                x_clip = self.in_proj_layers[i](x_clip)  # (B, T, C)
                c_clip = self.cond_proj_layers[i](c_clip)
                validity_pred, h_ = self.conv_layers[i](x_clip.transpose(1,2), c_clip.transpose(1,2))
            else:
                raise NotImplementedError

            h += h_
            validity.append(validity_pred)
        if len(validity) != len(self.conv_layers):
            return None, start_frames_wins, h
        if self.reduction == 'sum':
            validity = sum(validity)  # [B]
        elif self.reduction == 'stack':
            validity = torch.stack(validity, -1)  # [B, W_L]
        return validity, start_frames_wins, h


class Discriminator(nn.Module):
    def __init__(self, x_dim=80, y_dim=64, disc_type='standard', 
                uncond_disc=False, kernel_size=3, hidden_size=128, norm_type='bn', reduction='sum', time_lengths=(8,16,32)):
        """_summary_

        Args:
            time_lengths (list, optional): the list of  window size. Defaults to [32, 64, 128].
            x_dim (int, optional): the dim of audio features. Defaults to 80, corresponding to mel-spec.
            y_dim (int, optional): the dim of facial coeff. Defaults to 64, correspond to exp; other options can be 7(pose) or 71(exp+pose).
            kernel (tuple, optional): _description_. Defaults to (3, 3).
            c_in (int, optional): _description_. Defaults to 1.
            hidden_size (int, optional): _description_. Defaults to 128.
            norm_type (str, optional): _description_. Defaults to 'bn'.
            reduction (str, optional): _description_. Defaults to 'sum'.
            uncond_disc (bool, optional): _description_. Defaults to False.
        """
        super(Discriminator, self).__init__()
        self.time_lengths = time_lengths
        self.x_dim, self.y_dim = x_dim, y_dim
        self.disc_type = disc_type
        self.reduction = reduction
        self.uncond_disc = uncond_disc

        if uncond_disc:
            self.x_dim = 0
            cond_dim = 0

        else:
            cond_dim = 64
            self.mel_encoder = nn.Sequential(*[
                    nn.Conv1d(self.x_dim, 64, 3, 1, 1, bias=False),
                    nn.BatchNorm1d(64),
                    nn.GELU(),
                    nn.Conv1d(64, cond_dim, 3, 1, 1, bias=False)
                ]) 

        self.disc = MultiWindowDiscriminator(
            time_lengths=self.time_lengths,
            in_dim=self.y_dim,
            cond_dim=cond_dim,
            kernel_size=kernel_size,
            hidden_size=hidden_size, norm_type=norm_type,
            reduction=reduction,
            disc_type=disc_type
        )
        self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='nearest').transpose(1,2))
    
    @property
    def device(self):
        return self.disc.parameters().__next__().device

    def forward(self,x, batch, start_frames_wins=None):
        """

        :param x: [B, T, C]
        :param cond: [B, T, cond_size]
        :return:
        """
        x = x.to(self.device)
        if not self.uncond_disc:
            mel = self.downsampler(batch['mel'].to(self.device))
            mel_feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2)
        else:
            mel_feat = None
        x_len = x.sum(-1).ne(0).int().sum([1])
        disc_confidence, start_frames_wins, h = self.disc(x, x_len, mel_feat, start_frames_wins=start_frames_wins)
        return disc_confidence