File size: 821 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch.nn as nn


def initialize_decoder(module):
    for m in module.modules():

        if isinstance(m, nn.Conv2d):
            nn.init.kaiming_uniform_(m.weight, mode="fan_in", nonlinearity="relu")
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1)
            nn.init.constant_(m.bias, 0)

        elif isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)


def initialize_head(module):
    for m in module.modules():
        if isinstance(m, (nn.Linear, nn.Conv2d)):
            nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)