File size: 7,248 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""
BSD 3-Clause License
Copyright (c) Soumith Chintala 2016,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import torch
from torch import nn
from torch.nn import functional as F
__all__ = ["DeepLabV3Decoder"]
class DeepLabV3Decoder(nn.Sequential):
def __init__(self, in_channels, out_channels=256, atrous_rates=(12, 24, 36)):
super().__init__(
ASPP(in_channels, out_channels, atrous_rates),
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
self.out_channels = out_channels
def forward(self, *features):
return super().forward(features[-1])
class DeepLabV3PlusDecoder(nn.Module):
def __init__(
self,
encoder_channels,
out_channels=256,
atrous_rates=(12, 24, 36),
output_stride=16,
):
super().__init__()
if output_stride not in {8, 16}:
raise ValueError("Output stride should be 8 or 16, got {}.".format(output_stride))
self.out_channels = out_channels
self.output_stride = output_stride
self.aspp = nn.Sequential(
ASPP(encoder_channels[-1], out_channels, atrous_rates, separable=True),
SeparableConv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
scale_factor = 2 if output_stride == 8 else 4
self.up = nn.UpsamplingBilinear2d(scale_factor=scale_factor)
highres_in_channels = encoder_channels[-4]
highres_out_channels = 48 # proposed by authors of paper
self.block1 = nn.Sequential(
nn.Conv2d(highres_in_channels, highres_out_channels, kernel_size=1, bias=False),
# nn.BatchNorm2d(highres_out_channels),
nn.ReLU(),
)
self.block2 = nn.Sequential(
SeparableConv2d(
highres_out_channels + out_channels,
out_channels,
kernel_size=3,
padding=1,
bias=False,
),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
def forward(self, *features):
aspp_features = self.aspp(features[-1])
aspp_features = self.up(aspp_features)
high_res_features = self.block1(features[-4])
concat_features = torch.cat([aspp_features, high_res_features], dim=1)
fused_features = self.block2(concat_features)
return fused_features
class ASPPConv(nn.Sequential):
def __init__(self, in_channels, out_channels, dilation):
super().__init__(
nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
padding=dilation,
dilation=dilation,
bias=False,
),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
class ASPPSeparableConv(nn.Sequential):
def __init__(self, in_channels, out_channels, dilation):
super().__init__(
SeparableConv2d(
in_channels,
out_channels,
kernel_size=3,
padding=dilation,
dilation=dilation,
bias=False,
),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
class ASPPPooling(nn.Sequential):
def __init__(self, in_channels, out_channels):
super().__init__(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
def forward(self, x):
size = x.shape[-2:]
for mod in self:
x = mod(x)
return F.interpolate(x, size=size, mode="bilinear", align_corners=False)
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels, atrous_rates, separable=False):
super(ASPP, self).__init__()
modules = []
modules.append(
nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
)
rate1, rate2, rate3 = tuple(atrous_rates)
ASPPConvModule = ASPPConv if not separable else ASPPSeparableConv
modules.append(ASPPConvModule(in_channels, out_channels, rate1))
modules.append(ASPPConvModule(in_channels, out_channels, rate2))
modules.append(ASPPConvModule(in_channels, out_channels, rate3))
modules.append(ASPPPooling(in_channels, out_channels))
self.convs = nn.ModuleList(modules)
self.project = nn.Sequential(
nn.Conv2d(5 * out_channels, out_channels, kernel_size=1, bias=False),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.Dropout(0.5),
)
def forward(self, x):
res = []
for conv in self.convs:
res.append(conv(x))
res = torch.cat(res, dim=1)
return self.project(res)
class SeparableConv2d(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=True,
):
dephtwise_conv = nn.Conv2d(
in_channels,
in_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=False,
)
pointwise_conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=1,
bias=bias,
)
super().__init__(dephtwise_conv, pointwise_conv)
|