File size: 7,741 Bytes
e34aada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from torch import nn
from typing import Optional

from modules.img2plane.deeplabv3.encoders import get_encoder
from modules.img2plane.deeplabv3.base import (
    SegmentationModel,
    SegmentationHead,
    ClassificationHead,
)


from .decoder import DeepLabV3Decoder, DeepLabV3PlusDecoder


class DeepLabV3(SegmentationModel):
    """DeepLabV3_ implementation from "Rethinking Atrous Convolution for Semantic Image Segmentation"

    Args:
        encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone)
            to extract features of different spatial resolution
        encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features
            two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features
            with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on).
            Default is 5
        encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and
            other pretrained weights (see table with available weights for each encoder_name)
        decoder_channels: A number of convolution filters in ASPP module. Default is 256
        in_channels: A number of input channels for the model, default is 3 (RGB images)
        classes: A number of classes for output mask (or you can think as a number of channels of output mask)
        activation: An activation function to apply after the final convolution layer.
            Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**,
                **callable** and **None**.
            Default is **None**
        upsampling: Final upsampling factor. Default is 8 to preserve input-output spatial shape identity
        aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build
            on top of encoder if **aux_params** is not **None** (default). Supported params:
                - classes (int): A number of classes
                - pooling (str): One of "max", "avg". Default is "avg"
                - dropout (float): Dropout factor in [0, 1)
                - activation (str): An activation function to apply "sigmoid"/"softmax"
                    (could be **None** to return logits)
    Returns:
        ``torch.nn.Module``: **DeepLabV3**

    .. _DeeplabV3:
        https://arxiv.org/abs/1706.05587

    """

    def __init__(
        self,
        encoder_name: str = "resnet34",
        encoder_depth: int = 5,
        encoder_weights: Optional[str] = "imagenet",
        decoder_channels: int = 256,
        in_channels: int = 3,
        classes: int = 1,
        activation: Optional[str] = None,
        upsampling: int = 8,
        aux_params: Optional[dict] = None,
    ):
        super().__init__()

        self.encoder = get_encoder(
            encoder_name,
            in_channels=in_channels,
            depth=encoder_depth,
            weights=encoder_weights,
            output_stride=8,
        )

        self.decoder = DeepLabV3Decoder(
            in_channels=self.encoder.out_channels[-1],
            out_channels=decoder_channels,
        )

        self.segmentation_head = SegmentationHead(
            in_channels=self.decoder.out_channels,
            out_channels=classes,
            activation=activation,
            kernel_size=1,
            upsampling=upsampling,
        )

        if aux_params is not None:
            self.classification_head = ClassificationHead(in_channels=self.encoder.out_channels[-1], **aux_params)
        else:
            self.classification_head = None


class DeepLabV3Plus(SegmentationModel):
    """DeepLabV3+ implementation from "Encoder-Decoder with Atrous Separable
    Convolution for Semantic Image Segmentation"

    Args:
        encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone)
            to extract features of different spatial resolution
        encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features
            two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features
            with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on).
            Default is 5
        encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and
            other pretrained weights (see table with available weights for each encoder_name)
        encoder_output_stride: Downsampling factor for last encoder features (see original paper for explanation)
        decoder_atrous_rates: Dilation rates for ASPP module (should be a tuple of 3 integer values)
        decoder_channels: A number of convolution filters in ASPP module. Default is 256
        in_channels: A number of input channels for the model, default is 3 (RGB images)
        classes: A number of classes for output mask (or you can think as a number of channels of output mask)
        activation: An activation function to apply after the final convolution layer.
            Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**,
                **callable** and **None**.
            Default is **None**
        upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity
        aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build
            on top of encoder if **aux_params** is not **None** (default). Supported params:
                - classes (int): A number of classes
                - pooling (str): One of "max", "avg". Default is "avg"
                - dropout (float): Dropout factor in [0, 1)
                - activation (str): An activation function to apply "sigmoid"/"softmax"
                    (could be **None** to return logits)
    Returns:
        ``torch.nn.Module``: **DeepLabV3Plus**

    Reference:
        https://arxiv.org/abs/1802.02611v3

    """

    def __init__(
        self,
        encoder_name: str = "resnet34",
        encoder_depth: int = 5,
        encoder_weights: Optional[str] = "imagenet",
        encoder_output_stride: int = 16,
        decoder_channels: int = 256,
        decoder_atrous_rates: tuple = (12, 24, 36),
        in_channels: int = 3,
        classes: int = 1,
        activation: Optional[str] = None,
        upsampling: int = 4,
        aux_params: Optional[dict] = None,
    ):
        super().__init__()

        if encoder_output_stride not in [8, 16]:
            raise ValueError("Encoder output stride should be 8 or 16, got {}".format(encoder_output_stride))

        self.encoder = get_encoder(
            encoder_name,
            in_channels=in_channels,
            depth=encoder_depth,
            weights=encoder_weights,
            output_stride=encoder_output_stride,
        )

        self.decoder = DeepLabV3PlusDecoder(
            encoder_channels=self.encoder.out_channels,
            out_channels=decoder_channels,
            atrous_rates=decoder_atrous_rates,
            output_stride=encoder_output_stride,
        )

        self.segmentation_head = SegmentationHead(
            in_channels=self.decoder.out_channels,
            out_channels=classes,
            activation=activation,
            kernel_size=1,
            upsampling=upsampling,
        )

        if aux_params is not None:
            self.classification_head = ClassificationHead(in_channels=self.encoder.out_channels[-1], **aux_params)
        else:
            self.classification_head = None