File size: 26,200 Bytes
e34aada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import numpy as np
import torch
import torch.distributed as dist
import os
import copy
import cv2
import hashlib
import tqdm
import scipy
import uuid
import random
from PIL import Image
from utils.commons.hparams import hparams
from utils.commons.tensor_utils import tensors_to_scalars, convert_to_np, move_to_cuda
from utils.nn.model_utils import not_requires_grad, num_params
from utils.nn.schedulers import NoneSchedule
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint, restore_weights, restore_opt_state
from utils.commons.base_task import BaseTask
from tasks.os_avatar.loss_utils.vgg19_loss import VGG19Loss
from modules.real3d.facev2v_warp.losses import PerceptualLoss
from tasks.os_avatar.dataset_utils.motion2video_dataset import Img2Plane_Dataset
import lpips
from utils.commons.dataset_utils import data_loader
from modules.real3d.img2plane_baseline import OSAvatar_Img2plane
from modules.eg3ds.models.triplane import TriPlaneGenerator
from modules.eg3ds.models.dual_discriminator import DualDiscriminator
from modules.eg3ds.torch_utils.ops import conv2d_gradfix
from modules.eg3ds.torch_utils.ops import upfirdn2d
from modules.eg3ds.models.dual_discriminator import filtered_resizing
class ScheduleForImg2Plane(NoneSchedule):
def __init__(self, optimizer, lr, lr_d, warmup_updates=0):
self.optimizer = optimizer
self.constant_lr = self.lr = lr
self.lr_d = lr_d
self.warmup_updates = warmup_updates
self.step(0)
def step(self, num_updates):
constant_lr = self.constant_lr
if self.warmup_updates > 0 and num_updates <= self.warmup_updates:
warmup = min(num_updates / self.warmup_updates, 1.0)
self.lr = max(constant_lr * warmup, 1e-7)
else:
self.lr = constant_lr
for optim_i in range(len(self.optimizer)-1):
self.optimizer[optim_i].param_groups[0]['lr'] = max(1e-5, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) # secc_img2plane
self.optimizer[optim_i].param_groups[1]['lr'] = max(1e-5, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates >= min(2_000, hparams['start_adv_iters']) else 0 # decoder
# fix住来自预训练EG3D的超分, 给img2plane 30000步的warmup时间
self.optimizer[optim_i].param_groups[2]['lr'] = max(1e-5, self.lr * (hparams.get("lr_decay_rate", 0.95)) ** (num_updates // hparams.get("lr_decay_interval", 5_000))) if num_updates >= hparams['start_adv_iters'] else 0 # SR module
self.optimizer[-1].param_groups[0]['lr'] = self.lr_d * 1 # for disc
return self.lr
class OSAvatarImg2PlaneTask(BaseTask):
def __init__(self):
super().__init__()
if hparams['lpips_mode'] == 'vgg19':
self.criterion_lpips = VGG19Loss()
elif hparams['lpips_mode'] in ['vgg16', 'vgg']:
hparams['lpips_mode'] = 'vgg'
self.criterion_lpips = lpips.LPIPS(net=hparams['lpips_mode'],lpips=True)
elif hparams['lpips_mode'] == 'vgg19_v2':
self.criterion_lpips = PerceptualLoss()
else:
raise NotImplementedError
self.gen_tmp_output = {}
if hparams.get("use_kv_dataset", True):
self.dataset_cls = Img2Plane_Dataset
else:
raise NotImplementedError()
self.start_adv_iters = hparams["start_adv_iters"]
self.resample_filter = upfirdn2d.setup_filter([1,3,3,1])
@data_loader
def train_dataloader(self):
train_dataset = self.dataset_cls(prefix='train')
self.train_dl = train_dataset.get_dataloader()
return self.train_dl
@data_loader
def val_dataloader(self):
val_dataset = self.dataset_cls(prefix='val')
self.val_dl = val_dataset.get_dataloader()
return self.val_dl
@data_loader
def test_dataloader(self):
val_dataset = self.dataset_cls(prefix='val')
self.val_dl = val_dataset.get_dataloader()
return self.val_dl
def build_model(self):
self.eg3d_model = TriPlaneGenerator()
load_ckpt(self.eg3d_model, hparams['pretrained_eg3d_ckpt'], strict=True)
self.model = OSAvatar_Img2plane()
load_ckpt(self.model, hparams['pretrained_eg3d_ckpt'], strict=False, verbose=False)
self.disc = DualDiscriminator()
load_ckpt(self.disc, hparams['pretrained_eg3d_ckpt'], strict=False, model_name='disc')
if hparams.get('init_from_ckpt', '') != '':
# load_ckpt(self.model.img2plane_backbone, ckpt_dir, model_name='model.img2plane_backbone', strict=True)
load_ckpt(self.model, hparams['init_from_ckpt'], model_name='model', strict=False)
# load_ckpt(self.model, hparams['init_from_ckpt'], model_name='model', strict=True)
load_ckpt(self.disc, hparams['init_from_ckpt'], model_name='disc', strict=True)
# restore_weights(self, get_last_checkpoint(hparams.get('init_from_ckpt', ''))[0])
print(f"restored weights from {hparams.get('init_from_ckpt', '')}")
# define groups of params, used to assign optimizer.
self.img2plane_backbone_params = [p for k, p in self.model.img2plane_backbone.named_parameters() if p.requires_grad]
self.decoder_params = [p for p in self.model.decoder.parameters() if p.requires_grad]
self.upsample_params = [p for p in self.model.superresolution.parameters() if p.requires_grad]
self.disc_params = [p for k, p in self.disc.named_parameters() if p.requires_grad]
return self.model
def build_optimizer(self, model):
self.optimizer_gen = optimizer_gen = torch.optim.Adam(
self.img2plane_backbone_params,
lr=hparams['lr_g'],
betas=(hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
)
self.optimizer_gen.add_param_group({
'params': self.decoder_params,
'lr': hparams['lr_g'],
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
})
self.optimizer_gen.add_param_group({
'params': self.upsample_params,
'lr': hparams['lr_g'],
'betas': (hparams['optimizer_adam_beta1_g'], hparams['optimizer_adam_beta2_g'])
})
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1)
self.optimizer_disc = optimizer_disc = torch.optim.Adam(
self.disc_params,
lr=hparams['lr_d'] * mb_ratio_d,
betas=(hparams['optimizer_adam_beta1_d'] ** mb_ratio_d, hparams['optimizer_adam_beta2_d'] ** mb_ratio_d))
optimizers = [optimizer_gen] * 2 + [optimizer_disc] # optim0-1: ref/mv; optim2: disc
return optimizers
def build_scheduler(self, optimizer):
mb_ratio_d = hparams['reg_interval_d'] / (hparams['reg_interval_d'] + 1)
return ScheduleForImg2Plane(optimizer, hparams['lr_g'], hparams['lr_d'] * mb_ratio_d, hparams['warmup_updates'])
def on_train_start(self):
print("==============================")
num_params(self.model, model_name="Generator")
for n, m in self.model.named_children():
num_params(m, model_name="|-- "+n)
print("==============================")
num_params(self.disc, model_name="Discriminator")
for n, m in self.disc.named_children():
num_params(m, model_name="|-- "+n)
print("==============================")
def forward_G(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=True, use_cached_backbone=False):
"""
ref_img: [B, 3, W, H]
camera: [b, 25], 16 dim c2w, and 9 dim intrinsic
"""
G = self.model
gen_output = G.forward(img=img, camera=camera, cond=cond, ret=ret, update_emas=update_emas, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone)
return gen_output
def forward_D(self, img, camera, update_emas=False):
D = self.disc
logits = D.forward(img, camera, update_emas=update_emas)
return logits
def prepare_batch(self, batch):
# get synthesized img as GT data
out_batch = {}
ws_camera = batch['ffhq_ws_cameras']
camera = batch['ffhq_ref_cameras']
fake_camera = batch['ffhq_mv_cameras']
z = torch.randn([camera.shape[0], hparams['z_dim']],device=camera.device)
with torch.no_grad():
ws = self.eg3d_model.mapping(z, ws_camera, update_emas=False, truncation_psi=0.7)
ref_img_gen = self.eg3d_model.synthesis(ws, camera, cache_backbone=True, use_cached_backbone=False)
mv_img_gen = self.eg3d_model.synthesis(ws, fake_camera, cache_backbone=False, use_cached_backbone=True)
ref_img_gen['image_raw'] = filtered_resizing(ref_img_gen['image'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased')
mv_img_gen['image_raw'] = filtered_resizing(mv_img_gen['image'], size=hparams['neural_rendering_resolution'], f=self.resample_filter, filter_mode='antialiased')
out_batch.update({
'ffhq_planes': ref_img_gen['plane'],
'ffhq_ref_imgs_raw': ref_img_gen['image_raw'],
'ffhq_ref_imgs': ref_img_gen['image'],
'ffhq_ref_imgs_depth': ref_img_gen['image_depth'],
'ffhq_mv_imgs_raw': mv_img_gen['image_raw'],
'ffhq_mv_imgs': mv_img_gen['image'],
'ffhq_mv_imgs_depth': mv_img_gen['image_depth'],
'ffhq_mv_imgs_feature': mv_img_gen['image_feature'],
'ffhq_ref_cameras': batch['ffhq_ref_cameras'],
'ffhq_mv_cameras': batch['ffhq_mv_cameras'],
})
return out_batch
def run_G_reference_image(self, batch):
losses = {}
ret = {}
if self.global_step+1 < self.start_adv_iters:
# at early stage, don't train on the ref camera too frequently, to prevent bill-board
if (self.global_step+1) % 5 != 0:
return losses
elif self.global_step < self.start_adv_iters + 5000:
if (self.global_step+1) % 2 != 0:
return losses
else:
# after 37,500 steps, we train on ref image every step.
pass
with torch.autograd.profiler.record_function('G_ref_forward'):
camera = batch['ffhq_ref_cameras']
img = batch['ffhq_ref_imgs']
img_raw = batch['ffhq_ref_imgs_raw']
img_depth = batch['ffhq_ref_imgs_depth']
gen_img = self.forward_G(img, camera, cond={'ref_cameras': batch['ffhq_ref_cameras']}, ret=ret)
if 'losses' in ret: losses.update(ret['losses'])
self.gen_tmp_output['recon_ref_imgs'] = gen_img['image'].detach()
self.gen_tmp_output['recon_ref_imgs_raw'] = gen_img['image_raw'].detach()
losses['G_ref_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean()
losses['G_ref_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std()
if hparams['use_mse']:
losses['G_ref_img_mae'] = (gen_img['image'] - img).pow(2).mean()
losses['G_ref_img_mae_raw'] = (gen_img['image_raw'] - img_raw).pow(2).mean()
else:
losses['G_ref_img_mae'] = (gen_img['image'] - img).abs().mean()
losses['G_ref_img_mae_raw'] = (gen_img['image_raw'] - img_raw).abs().mean()
pred_img_01 = ((gen_img['image'] + 1) / 2).clamp(0, 1)
pred_img_01_raw = ((gen_img['image_raw'] + 1) / 2).clamp(0, 1)
gt_img_01 = ((img + 1) / 2).clamp(0, 1)
gt_img_01_raw = ((img_raw + 1) / 2).clamp(0, 1)
losses['G_ref_img_lpips'] = self.criterion_lpips(pred_img_01, gt_img_01).mean()
losses['G_ref_img_lpips_raw'] = self.criterion_lpips(pred_img_01_raw, gt_img_01_raw).mean()
losses['G_ref_img_mae_depth'] = (gen_img['image_depth'] - img_depth).detach().abs().mean()
disc_inp_img = {
'image': gen_img['image'],
'image_raw': gen_img['image_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera)
losses['G_ref_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
return losses
def run_G_multiview_image(self, batch):
losses = {}
ret = {}
with torch.autograd.profiler.record_function('G_mv_forward'):
camera = batch['ffhq_mv_cameras']
img = batch['ffhq_mv_imgs']
img_raw = batch['ffhq_mv_imgs_raw']
img_depth = batch['ffhq_mv_imgs_depth']
gen_img = self.forward_G(batch['ffhq_ref_imgs'], camera, cond={'ref_cameras': batch['ffhq_ref_cameras']}, ret=ret)
if 'losses' in ret: losses.update(ret['losses'])
self.gen_tmp_output['recon_mv_imgs'] = gen_img['image'].detach()
self.gen_tmp_output['recon_mv_imgs_raw'] = gen_img['image_raw'].detach()
losses['G_mv_plane_l1_mean'] = (gen_img['plane'][:,:]).detach().abs().mean()
losses['G_mv_plane_l1_std'] = (gen_img['plane'][:,:]).detach().abs().std()
if hparams['use_mse']:
losses['G_mv_img_mae'] = (gen_img['image'] - img).pow(2).mean()
losses['G_mv_img_mae_raw'] = (gen_img['image_raw'] - img_raw).pow(2).mean()
else:
losses['G_mv_img_mae'] = (gen_img['image'] - img).abs().mean()
losses['G_mv_img_mae_raw'] = (gen_img['image_raw'] - img_raw).abs().mean()
pred_img_01 = (gen_img['image'] + 1) / 2
pred_img_01_raw = (gen_img['image_raw'] + 1) / 2
gt_img_01 = (img + 1) / 2
gt_img_01_raw = (img_raw + 1) / 2
losses['G_mv_img_lpips'] = self.criterion_lpips(pred_img_01, gt_img_01).mean()
losses['G_mv_img_lpips_raw'] = self.criterion_lpips(pred_img_01_raw, gt_img_01_raw).mean()
losses['G_mv_img_mae_depth'] = (gen_img['image_depth'] - img_depth).detach().abs().mean()
disc_inp_img = {
'image': gen_img['image'],
'image_raw': gen_img['image_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera)
losses['G_mv_adv'] = torch.nn.functional.softplus(-gen_logits).mean()
return losses
def run_G_reg(self, batch):
losses = {}
imgs = batch['ffhq_mv_imgs']
if (self.global_step+1) % hparams['reg_interval_g'] == 0:
with torch.autograd.profiler.record_function('G_regularize_forward'):
initial_coordinates = torch.rand((imgs.shape[0], 1000, 3), device=imgs.device) - 0.5 # [-0.5,0.5]
perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * 5e-3
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
source_sigma = self.model.sample(coordinates=all_coordinates, directions=torch.randn_like(all_coordinates), img=imgs, cond={'ref_cameras': batch['ffhq_mv_cameras']}, update_emas=False)['sigma']
source_sigma_initial = source_sigma[:, :source_sigma.shape[1]//2]
source_sigma_perturbed = source_sigma[:, source_sigma.shape[1]//2:]
density_reg_loss = torch.nn.functional.l1_loss(source_sigma_initial, source_sigma_perturbed)
# we want the pertubed position has similar density
losses['G_regularize_density_l1'] = density_reg_loss
return losses
def forward_D_main(self, batch):
"""
we update ema this substep.
"""
losses = {}
with torch.autograd.profiler.record_function('D_minimize_fake_forward'):
if 'recon_ref_imgs' in self.gen_tmp_output:
camera = batch['ffhq_ref_cameras']
disc_inp_img = {
'image': self.gen_tmp_output['recon_ref_imgs'],
'image_raw': self.gen_tmp_output['recon_ref_imgs_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera, update_emas=True)
losses['D_minimize_ref_fake'] = torch.nn.functional.softplus(gen_logits).mean()
if 'recon_mv_imgs' in self.gen_tmp_output:
camera = batch['ffhq_mv_cameras']
disc_inp_img = {
'image': self.gen_tmp_output['recon_mv_imgs'],
'image_raw': self.gen_tmp_output['recon_mv_imgs_raw'],
}
gen_logits = self.forward_D(disc_inp_img, camera, update_emas=True)
losses['D_minimize_mv_fake'] = torch.nn.functional.softplus(gen_logits).mean()
# Maximize confidence on true samples
with torch.autograd.profiler.record_function('D_maximize_true_forward'):
if hparams.get("ffhq_disc_inp_mode", "eg3d_gen") == 'eg3d_gen':
ref_cameras = batch['ffhq_ref_cameras']
ref_img_tmp_image = batch['ffhq_ref_imgs'].detach().requires_grad_(True)
ref_img_tmp_image_raw = batch['ffhq_ref_imgs_raw'].detach().requires_grad_(True)
elif hparams.get("ffhq_disc_inp_mode", "eg3d_gen") == 'ffhq':
ref_cameras = batch['ffhq_gt_cameras']
ref_img_tmp_image = batch['ffhq_gt_imgs'].detach().requires_grad_(True)
ref_img_tmp_image_raw = batch['ffhq_gt_imgs_raw'].detach().requires_grad_(True)
ref_img_tmp = {'image': ref_img_tmp_image, 'image_raw': ref_img_tmp_image_raw}
ref_logits = self.forward_D(ref_img_tmp, ref_cameras)
losses['D_maximize_ref'] = torch.nn.functional.softplus(-ref_logits).mean()
if hparams.get("ffhq_disc_inp_mode", "eg3d_gen") == 'eg3d_gen':
mv_cameras = batch['ffhq_mv_cameras']
mv_img_tmp_image = batch['ffhq_mv_imgs'].detach().requires_grad_(True)
mv_img_tmp_image_raw = batch['ffhq_mv_imgs_raw'].detach().requires_grad_(True)
mv_img_tmp = {'image': mv_img_tmp_image, 'image_raw': mv_img_tmp_image_raw}
mv_logits = self.forward_D(mv_img_tmp, mv_cameras)
losses['D_maximize_mv'] = torch.nn.functional.softplus(-mv_logits).mean()
if (self.global_step+1) % hparams['reg_interval_d'] == 0 and self.training is True:
with torch.autograd.profiler.record_function('D_gradient_penalty_on_real_imgs_forward'), conv2d_gradfix.no_weight_gradients():
ref_r1_grads = torch.autograd.grad(outputs=[ref_logits.sum()], inputs=[ref_img_tmp['image'], ref_img_tmp['image_raw']], create_graph=True, only_inputs=True)
ref_r1_grads_image = ref_r1_grads[0]
ref_r1_grads_image_raw = ref_r1_grads[1]
ref_r1_penalty_raw = ref_r1_grads_image_raw.square().sum([1,2,3]).mean()
ref_r1_penalty_image = ref_r1_grads_image.square().sum([1,2,3]).mean()
losses['D_ref_gradient_penalty'] = (ref_r1_penalty_image + ref_r1_penalty_raw) / 2
if hparams.get("ffhq_disc_inp_mode", "eg3d_gen") == 'eg3d_gen':
mv_r1_grads = torch.autograd.grad(outputs=[mv_logits.sum()], inputs=[mv_img_tmp['image'], mv_img_tmp['image_raw']], create_graph=True, only_inputs=True)
mv_r1_grads_image = mv_r1_grads[0]
mv_r1_grads_image_raw = mv_r1_grads[1]
mv_r1_penalty_raw = mv_r1_grads_image_raw.square().sum([1,2,3]).mean()
mv_r1_penalty_image = mv_r1_grads_image.square().sum([1,2,3]).mean()
losses['D_mv_gradient_penalty'] = (mv_r1_penalty_image + mv_r1_penalty_raw) / 2
self.gen_tmp_output = {}
return losses
def _training_step(self, sample, batch_idx, optimizer_idx):
if len(sample) == 0:
return None
if optimizer_idx == 0:
sample = self.prepare_batch(sample)
self.cache_sample = sample
else:
sample = self.cache_sample
# self.update_ema()
losses = {}
if optimizer_idx == 0:
losses.update(self.run_G_reference_image(sample))
# after the early stage, we decrease the lambda of error-based loss to prevent oversmoothness
loss_weights = {
'G_ref_img_mae': 1.0,
'G_ref_img_mae_raw': 1.0,
'G_ref_img_mae_depth': hparams.get('lambda_mse_depth', 0),
'G_ref_img_lpips': 0.1,
'G_ref_img_lpips_raw': 0.1,
'G_ref_adv': 0.0 if self.global_step < self.start_adv_iters else 0.1,
}
elif optimizer_idx == 1:
losses.update(self.run_G_multiview_image(sample))
losses.update(self.run_G_reg(sample))
loss_weights = {
'G_mv_img_mae': 1.0,
'G_mv_img_mae_raw': 1.0,
'G_mv_img_mae_depth': hparams.get('lambda_mse_depth', 0),
'G_mv_img_lpips': 0.1,
'G_mv_img_lpips_raw': 0.1,
'G_mv_adv': 0.0 if self.global_step < self.start_adv_iters else 0.025,
'G_regularize_density_l1': hparams['lambda_density_reg'],
}
elif optimizer_idx == 2:
losses.update(self.forward_D_main(sample))
loss_weights = {
'D_maximize_ref': 1.0,
'D_minimize_ref_fake': 1.0,
'D_ref_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
'D_maximize_mv': 1.0,
'D_minimize_mv_fake': 1.0,
'D_mv_gradient_penalty': hparams['lambda_gradient_penalty'] * hparams['reg_interval_d'],
}
total_loss = sum([loss_weights[k] * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
if len(losses) == 0:
return None
return total_loss, losses
#####################
# Validation
#####################
def validation_start(self):
if self.global_step % hparams['valid_infer_interval'] == 0:
self.gen_dir = os.path.join(hparams['work_dir'], f'validation_results')
os.makedirs(self.gen_dir, exist_ok=True)
@torch.no_grad()
def validation_step(self, sample, batch_idx):
outputs = {}
losses = {}
if len(sample) == 0:
return None
sample = self.prepare_batch(sample)
rank = 0 if len(set(os.environ['CUDA_VISIBLE_DEVICES'].split(","))) == 1 else dist.get_rank()
losses.update(self.run_G_reference_image(sample))
losses.update(self.run_G_multiview_image(sample))
losses.update(self.forward_D_main(sample))
outputs['losses'] = losses
outputs['total_loss'] = sum(outputs['losses'].values())
outputs = tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots'] and rank == 0:
imgs_ref = sample['ffhq_ref_imgs']
dummy_cond = {
'cond_src': torch.zeros([imgs_ref.shape[0], 3, 512, 512], dtype=sample['ffhq_mv_cameras'].dtype, device=sample['ffhq_mv_cameras'].device),
'cond_drv': torch.zeros([imgs_ref.shape[0], 3, 512, 512], dtype=sample['ffhq_mv_cameras'].dtype, device=sample['ffhq_mv_cameras'].device),
'ref_cameras': sample['ffhq_ref_cameras'],
}
gen_img = self.model.forward(imgs_ref, sample['ffhq_mv_cameras'], cond=dummy_cond, noise_mode='const')
gen_img_recon = self.model.forward(imgs_ref, sample['ffhq_ref_cameras'], cond=dummy_cond, noise_mode='const')
imgs_recon = gen_img_recon['image'].permute(0,2,3,1)
imgs_recon_raw = filtered_resizing(gen_img_recon['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
imgs_recon_depth = gen_img_recon['image_depth'].permute(0,2,3,1)
imgs_pred = gen_img['image'].permute(0,2,3,1)
imgs_pred_raw = filtered_resizing(gen_img['image_raw'], size=512, f=self.resample_filter, filter_mode='antialiased').permute(0, 2,3,1)
imgs_pred_depth = gen_img['image_depth'].permute(0,2,3,1)
imgs_ref = imgs_ref.permute(0,2,3,1)
imgs_mv = sample['ffhq_mv_imgs'].permute(0,2,3,1) # [B, H, W, 3]
for i in range(len(imgs_pred)):
idx_string = format(i+batch_idx * hparams['batch_size'], "05d")
base_fn = f"{idx_string}"
img_ref_mv_recon_pred = torch.cat([imgs_ref[i], imgs_mv[i], imgs_recon_raw[i], imgs_pred_raw[i], imgs_recon[i], imgs_pred[i]], dim=1)
self.save_rgb_to_fname(img_ref_mv_recon_pred, f"{self.gen_dir}/images_rgb_iter{self.global_step}/ref_mv_recon_pred_{base_fn}.png")
img_depth_recon_pred = torch.cat([imgs_recon_depth[i], imgs_pred_depth[i]], dim=1)
self.save_depth_to_fname(img_depth_recon_pred, f"{self.gen_dir}/images_depth_iter{self.global_step}/recon_pred_{base_fn}.png")
return outputs
def validation_end(self, outputs):
return super().validation_end(outputs)
@staticmethod
def save_rgb_to_fname(rgb, fname):
"""
rgb: [H, W, 3]
"""
os.makedirs(os.path.dirname(fname), exist_ok=True)
img = (rgb * 127.5 + 128).clamp(0, 255)
img = convert_to_np(img).astype(np.uint8)
Image.fromarray(img, 'RGB').save(fname)
@staticmethod
def save_depth_to_fname(depth, fname):
"""
depth: [H, W, 3]
"""
os.makedirs(os.path.dirname(fname), exist_ok=True)
low, high = depth.min(), depth.max()
img = (depth - low) * (255 / (high - low))
img = convert_to_np(img)
img = np.rint(img).clip(0, 255).astype(np.uint8)
Image.fromarray(img[:, :, 0], 'L').save(fname)
|