ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
19.2 kB
import glob
import json
import os
import cv2
import pickle
import random
import re
import subprocess
from functools import partial
import librosa.core
import numpy as np
import torch
import torch.distributions
import torch.distributed as dist
import torch.optim
import torch.utils.data
from utils.commons.indexed_datasets import IndexedDataset
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import pandas as pd
from tqdm import tqdm
import csv
from utils.commons.hparams import hparams, set_hparams
from utils.commons.meters import Timer
from data_util.face3d_helper import Face3DHelper
from utils.audio import librosa_wav2mfcc
from utils.commons.dataset_utils import collate_xd
from utils.commons.tensor_utils import convert_to_tensor
from data_gen.utils.process_video.extract_segment_imgs import decode_segmap_mask_from_image
from data_gen.eg3d.convert_to_eg3d_convention import get_eg3d_convention_camera_pose_intrinsic
from utils.commons.image_utils import load_image_as_uint8_tensor
from modules.eg3ds.camera_utils.pose_sampler import UnifiedCameraPoseSampler
def sample_idx(img_dir, num_frames):
cnt = 0
while True:
cnt += 1
if cnt > 1000:
print(f"recycle for more than 1000 times, check this {img_dir}")
idx = random.randint(0, num_frames-1)
ret1 = find_img_name(img_dir, idx)
if ret1 == 'None':
continue
ret2 = find_img_name(img_dir.replace("/gt_imgs/","/head_imgs/"), idx)
if ret2 == 'None':
continue
ret3 = find_img_name(img_dir.replace("/gt_imgs/","/inpaint_torso_imgs/"), idx)
if ret3 == 'None':
continue
ret4 = find_img_name(img_dir.replace("/gt_imgs/","/com_imgs/"), idx)
if ret4 == 'None':
continue
return idx
def find_img_name(img_dir, idx):
gt_img_fname = os.path.join(img_dir, format(idx, "05d") + ".jpg")
if not os.path.exists(gt_img_fname):
gt_img_fname = os.path.join(img_dir, str(idx) + ".jpg")
if not os.path.exists(gt_img_fname):
gt_img_fname = os.path.join(img_dir, format(idx, "08d") + ".jpg")
if not os.path.exists(gt_img_fname):
gt_img_fname = os.path.join(img_dir, format(idx, "08d") + ".png")
if not os.path.exists(gt_img_fname):
gt_img_fname = os.path.join(img_dir, format(idx, "05d") + ".png")
if not os.path.exists(gt_img_fname):
gt_img_fname = os.path.join(img_dir, str(idx) + ".png")
if os.path.exists(gt_img_fname):
return gt_img_fname
else:
return 'None'
def get_win_from_arr(arr, index, win_size):
left = index - win_size//2
right = index + (win_size - win_size//2)
pad_left = 0
pad_right = 0
if left < 0:
pad_left = -left
left = 0
if right > arr.shape[0]:
pad_right = right - arr.shape[0]
right = arr.shape[0]
win = arr[left:right]
if pad_left > 0:
if isinstance(arr, np.ndarray):
win = np.concatenate([np.zeros_like(win[:pad_left]), win], axis=0)
else:
win = torch.cat([torch.zeros_like(win[:pad_left]), win], dim=0)
if pad_right > 0:
if isinstance(arr, np.ndarray):
win = np.concatenate([win, np.zeros_like(win[:pad_right])], axis=0) # [8, 16]
else:
win = torch.cat([win, torch.zeros_like(win[:pad_right])], dim=0) # [8, 16]
return win
class Img2Plane_Dataset(Dataset):
def __init__(self, prefix='train', data_dir=None):
self.db_key = prefix
self.ds = None
self.sizes = None
self.x_maxframes = 200 # 50 video frames
self.face3d_helper = Face3DHelper('deep_3drecon/BFM')
self.x_multiply = 8
self.hparams = hparams
self.pose_sampler = UnifiedCameraPoseSampler()
self.ds_path = self.hparams['binary_data_dir'] if data_dir is None else data_dir
def __len__(self):
ds = self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
return len(ds)
def _get_item(self, index):
"""
This func is necessary to open files in multi-threads!
"""
if self.ds is None:
self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
return self.ds[index]
def __getitem__(self, idx):
raw_item = self._get_item(idx)
if raw_item is None:
print("loading from binary data failed!")
return None
item = {
'idx': idx,
'item_name': raw_item['img_dir'],
}
img_dir = raw_item['img_dir'].replace('/com_imgs/', '/gt_imgs/')
num_frames = len(raw_item['exp'])
hparams = self.hparams
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':convert_to_tensor(raw_item['euler']).cpu(), 'trans':convert_to_tensor(raw_item['trans']).cpu()})
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
raw_item['c2w'] = c2w
raw_item['intrinsics'] = intrinsics
max_pitch = 10 / 180 * 3.1415926 # range for mv pitch angle is smaller than that of ref
min_pitch = -max_pitch
pitch = random.random() * (max_pitch - min_pitch) + min_pitch
max_yaw = 16 / 180 * 3.1415926
min_yaw = - max_yaw
yaw = random.random() * (max_yaw - min_yaw) + min_yaw
distance = random.random() * (3.2-2.7) + 2.7 # [2.7, 4.0]
ws_camera = self.pose_sampler.get_camera_pose(pitch, yaw, lookat_location=torch.tensor([0,0,0.2]), distance_to_orig=distance)[0]
if hparams.get("random_sample_pose", False) is True and random.random() < 0.5 :
max_pitch = 26 / 180 * 3.1415926 # range for mv pitch angle is smaller than that of ref
min_pitch = -max_pitch
pitch = random.random() * (max_pitch - min_pitch) + min_pitch
max_yaw = 38 / 180 * 3.1415926
min_yaw = - max_yaw
yaw = random.random() * (max_yaw - min_yaw) + min_yaw
distance = random.random() * (4.0-2.7) + 2.7 # [2.7, 4.0]
real_camera = self.pose_sampler.get_camera_pose(pitch, yaw, lookat_location=torch.tensor([0,0,0.2]), distance_to_orig=distance)[0]
else:
real_idx = sample_idx(img_dir, num_frames)
real_c2w = raw_item['c2w'][real_idx]
real_intrinsics = raw_item['intrinsics'][real_idx]
real_camera = np.concatenate([real_c2w.reshape([16,]) , real_intrinsics.reshape([9,])], axis=0)
real_camera = convert_to_tensor(real_camera)
if hparams.get("random_sample_pose", False) is True and random.random() < 0.5 :
max_pitch = 26 / 180 * 3.1415926 # range for mv pitch angle is smaller than that of ref
min_pitch = -max_pitch
pitch = random.random() * (max_pitch - min_pitch) + min_pitch
max_yaw = 38 / 180 * 3.1415926
min_yaw = - max_yaw
yaw = random.random() * (max_yaw - min_yaw) + min_yaw
distance = random.random() * (4.0-2.7) + 2.7 # [2.7, 4.0]
fake_camera = self.pose_sampler.get_camera_pose(pitch, yaw, lookat_location=torch.tensor([0,0,0.2]), distance_to_orig=distance)[0]
else:
fake_idx = sample_idx(img_dir, num_frames)
fake_c2w = raw_item['c2w'][fake_idx]
fake_intrinsics = raw_item['intrinsics'][fake_idx]
fake_camera = np.concatenate([fake_c2w.reshape([16,]), fake_intrinsics.reshape([9,])], axis=0)
fake_camera = convert_to_tensor(fake_camera)
item.update({
'ws_camera': ws_camera,
'real_camera': real_camera,
'fake_camera': fake_camera,
# id,exp,euler,trans, used to generate the secc map
})
return item
def get_dataloader(self, batch_size=1, num_workers=0):
loader = DataLoader(self, pin_memory=True,collate_fn=self.collater, batch_size=batch_size, num_workers=num_workers)
return loader
def collater(self, samples):
hparams = self.hparams
if len(samples) == 0:
return {}
batch = {}
batch['ffhq_ws_cameras'] = torch.stack([s['ws_camera'] for s in samples], dim=0) # [B, 204]
batch['ffhq_ref_cameras'] = torch.stack([s['real_camera'] for s in samples], dim=0) # [B, 204]
batch['ffhq_mv_cameras'] = torch.stack([s['fake_camera'] for s in samples], dim=0) # [B, 204]
return batch
class Motion2Video_Dataset(Dataset):
def __init__(self, prefix='train', data_dir=None):
self.db_key = prefix
self.ds = None
self.sizes = None
self.x_maxframes = 200 # 50 video frames
self.face3d_helper = Face3DHelper('deep_3drecon/BFM')
self.x_multiply = 8
self.hparams = hparams
self.ds_path = self.hparams['binary_data_dir'] if data_dir is None else data_dir
def __len__(self):
ds = self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
return len(ds)
def _get_item(self, index):
"""
This func is necessary to open files in multi-threads!
"""
if self.ds is None:
self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
return self.ds[index]
def __getitem__(self, idx):
raw_item = self._get_item(idx)
if raw_item is None:
print("loading from binary data failed!")
return None
item = {
'idx': idx,
'item_name': raw_item['img_dir'],
}
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':convert_to_tensor(raw_item['euler']).cpu(), 'trans':convert_to_tensor(raw_item['trans']).cpu()})
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
raw_item['c2w'] = c2w
raw_item['intrinsics'] = intrinsics
img_dir = raw_item['img_dir'].replace('/com_imgs/', '/gt_imgs/')
num_frames = len(raw_item['exp'])
# src
real_idx = sample_idx(img_dir, num_frames)
real_c2w = raw_item['c2w'][real_idx]
real_intrinsics = raw_item['intrinsics'][real_idx]
real_camera = np.concatenate([real_c2w.reshape([16,]) , real_intrinsics.reshape([9,])], axis=0)
real_camera = convert_to_tensor(real_camera)
item['real_camera'] = real_camera
gt_img_fname = find_img_name(img_dir, real_idx)
gt_img = load_image_as_uint8_tensor(gt_img_fname)[..., :3] # ignore alpha channel when png
item['real_gt_img'] = gt_img.float() / 127.5 - 1
# for key in ['head', 'torso', 'torso_with_bg', 'person']:
for key in ['head', 'com', 'inpaint_torso']:
key_img_dir = img_dir.replace("/gt_imgs/",f"/{key}_imgs/")
key_img_fname = find_img_name(key_img_dir, real_idx)
key_img = load_image_as_uint8_tensor(key_img_fname)[..., :3] # ignore alpha channel when png
item[f'real_{key}_img'] = key_img.float() / 127.5 - 1
bg_img_name = img_dir.replace("/gt_imgs/",f"/bg_img/") + '.jpg'
bg_img = load_image_as_uint8_tensor(bg_img_name)[..., :3] # ignore alpha channel when png
item[f'bg_img'] = bg_img.float() / 127.5 - 1
seg_img_name = gt_img_fname.replace("/gt_imgs/",f"/segmaps/").replace(".jpg", ".png")
seg_img = cv2.imread(seg_img_name)[:,:, ::-1]
segmap = torch.from_numpy(decode_segmap_mask_from_image(seg_img)) # [6, H, W]
item[f'real_segmap'] = segmap
item[f'real_head_mask'] = segmap[[1,3,5]].sum(dim=0)
item[f'real_torso_mask'] = segmap[[2,4]].sum(dim=0)
item.update({
# id,exp,euler,trans, used to generate the secc map
'real_identity': convert_to_tensor(raw_item['id']).reshape([80,]),
# 'real_identity': convert_to_tensor(raw_item['id'][real_idx]).reshape([80,]),
'real_expression': convert_to_tensor(raw_item['exp'][real_idx]).reshape([64,]),
'real_euler': convert_to_tensor(raw_item['euler'][real_idx]).reshape([3,]),
'real_trans': convert_to_tensor(raw_item['trans'][real_idx]).reshape([3,]),
})
pertube_idx_candidates = [idx for idx in [real_idx-1, real_idx+1] if (idx>=0 and idx <= num_frames-1 )] # previous frame
# pertube_idx_candidates = [idx for idx in [real_idx-2, real_idx-1, real_idx+1, real_idx+2] if (idx>=0 and idx <= num_frames-1 )] # previous frame
pertube_idx = random.choice(pertube_idx_candidates)
item[f'real_pertube_expression_1'] = convert_to_tensor(raw_item['exp'][pertube_idx]).reshape([64,])
item[f'real_pertube_expression_2'] = item['real_expression'] * 2 - item[f'real_pertube_expression_1']
# tgt
fake_idx = sample_idx(img_dir, num_frames)
min_offset = min(50, max((num_frames-1-fake_idx)//2, (fake_idx)//2))
while abs(fake_idx - real_idx) < min_offset:
fake_idx = sample_idx(img_dir, num_frames)
min_offset = min(50, max((num_frames-1-fake_idx)//2, (fake_idx)//2))
fake_c2w = raw_item['c2w'][fake_idx]
fake_intrinsics = raw_item['intrinsics'][fake_idx]
fake_camera = np.concatenate([fake_c2w.reshape([16,]) , fake_intrinsics.reshape([9,])], axis=0)
fake_camera = convert_to_tensor(fake_camera)
item['fake_camera'] = fake_camera
gt_img_fname = find_img_name(img_dir, fake_idx)
gt_img = load_image_as_uint8_tensor(gt_img_fname)[..., :3] # ignore alpha channel when png
item['fake_gt_img'] = gt_img.float() / 127.5 - 1
seg_img_name = gt_img_fname.replace("/gt_imgs/",f"/segmaps/").replace(".jpg", ".png")
seg_img = cv2.imread(seg_img_name)[:,:, ::-1]
segmap = torch.from_numpy(decode_segmap_mask_from_image(seg_img)) # [6, H, W]
item[f'fake_segmap'] = segmap
item[f'fake_head_mask'] = segmap[[1,3,5]].sum(dim=0)
item[f'fake_torso_mask'] = segmap[[2,4]].sum(dim=0)
# for key in ['head', 'torso', 'torso_with_bg', 'person']:
for key in ['head', 'com', 'inpaint_torso']:
key_img_dir = img_dir.replace("/gt_imgs/",f"/{key}_imgs/")
key_img_fname = find_img_name(key_img_dir, fake_idx)
key_img = load_image_as_uint8_tensor(key_img_fname)[..., :3] # ignore alpha channel when png
item[f'fake_{key}_img'] = key_img.float() / 127.5 - 1
item.update({
# id,exp,euler,trans, used to generate the secc map
f'fake_identity': convert_to_tensor(raw_item['id']).reshape([80,]),
# f'fake_identity': convert_to_tensor(raw_item['id'][fake_idx]).reshape([80,]),
f'fake_expression': convert_to_tensor(raw_item['exp'][fake_idx]).reshape([64,]),
f'fake_euler': convert_to_tensor(raw_item['euler'][fake_idx]).reshape([3,]),
f'fake_trans': convert_to_tensor(raw_item['trans'][fake_idx]).reshape([3,]),
})
# pertube_idx_candidates = [idx for idx in [fake_idx-2, fake_idx-1, fake_idx+1, fake_idx+2] if (idx>=0 and idx <= num_frames-1 )] # previous frame
pertube_idx_candidates = [idx for idx in [fake_idx-1, fake_idx+1] if (idx>=0 and idx <= num_frames-1 )] # previous frame
pertube_idx = random.choice(pertube_idx_candidates)
item[f'fake_pertube_expression_1'] = convert_to_tensor(raw_item['exp'][pertube_idx]).reshape([64,])
item[f'fake_pertube_expression_2'] = item['fake_expression'] * 2 - item[f'fake_pertube_expression_1']
return item
def get_dataloader(self, batch_size=1, num_workers=0):
loader = DataLoader(self, pin_memory=True,collate_fn=self.collater, batch_size=batch_size, num_workers=num_workers)
return loader
def collater(self, samples):
hparams = self.hparams
if len(samples) == 0:
return {}
batch = {}
batch['th1kh_item_names'] = [s['item_name'] for s in samples]
batch['th1kh_ref_gt_imgs'] = torch.stack([s['real_gt_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
batch['th1kh_ref_head_masks'] = torch.stack([s['real_head_mask'] for s in samples]) # [B,6,H,W]
batch['th1kh_ref_torso_masks'] = torch.stack([s['real_torso_mask'] for s in samples]) # [B,6,H,W]
batch['th1kh_ref_segmaps'] = torch.stack([s['real_segmap'] for s in samples]) # [B,6,H,W]
# for key in ['head', 'torso', 'torso_with_bg', 'person']:
for key in ['head', 'com', 'inpaint_torso']:
batch[f'th1kh_ref_{key}_imgs'] = torch.stack([s[f'real_{key}_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
batch[f'th1kh_bg_imgs'] = torch.stack([s[f'bg_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
batch['th1kh_ref_cameras'] = torch.stack([s['real_camera'] for s in samples], dim=0) # [B, 204]
batch['th1kh_ref_ids'] = torch.stack([s['real_identity'] for s in samples], dim=0) # [B, 204]
batch['th1kh_ref_exps'] = torch.stack([s['real_expression'] for s in samples], dim=0) # [B, 204]
batch['th1kh_ref_eulers'] = torch.stack([s['real_euler'] for s in samples], dim=0) # [B, 204]
batch['th1kh_ref_trans'] = torch.stack([s['real_trans'] for s in samples], dim=0) # [B, 204]
batch['th1kh_mv_gt_imgs'] = torch.stack([s['fake_gt_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
# for key in ['head', 'torso', 'torso_with_bg', 'person']:
for key in ['head', 'com', 'inpaint_torso']:
batch[f'th1kh_mv_{key}_imgs'] = torch.stack([s[f'fake_{key}_img'] for s in samples]).permute(0,3,1,2) # [B, H, W, 3]==>[B,3,H,W]
batch['th1kh_mv_head_masks'] = torch.stack([s['fake_head_mask'] for s in samples]) # [B,6,H,W]
batch['th1kh_mv_torso_masks'] = torch.stack([s['fake_torso_mask'] for s in samples]) # [B,6,H,W]
batch['th1kh_mv_cameras'] = torch.stack([s['fake_camera'] for s in samples], dim=0) # [B, 204]
batch['th1kh_mv_ids'] = torch.stack([s['fake_identity'] for s in samples], dim=0) # [B, 204]
batch['th1kh_mv_exps'] = torch.stack([s['fake_expression'] for s in samples], dim=0) # [B, 204]
batch['th1kh_mv_eulers'] = torch.stack([s['fake_euler'] for s in samples], dim=0) # [B, 204]
batch['th1kh_mv_trans'] = torch.stack([s['fake_trans'] for s in samples], dim=0) # [B, 204]
batch['th1kh_ref_pertube_exps_1'] = torch.stack([s['real_pertube_expression_1'] for s in samples], dim=0) # [B, 204]
batch['th1kh_ref_pertube_exps_2'] = torch.stack([s['real_pertube_expression_2'] for s in samples], dim=0) # [B, 204]
batch['th1kh_mv_pertube_exps_1'] = torch.stack([s['fake_pertube_expression_1'] for s in samples], dim=0) # [B, 204]
batch['th1kh_mv_pertube_exps_2'] = torch.stack([s['fake_pertube_expression_2'] for s in samples], dim=0) # [B, 204]
return batch
if __name__ == '__main__':
os.environ["OMP_NUM_THREADS"] = "1"
ds = Img2Plane_Dataset("train", 'data/binary/th1kh')
# ds = Motion2Video_Dataset("train", 'data/binary/th1kh')
dl = ds.get_dataloader()
for b in tqdm(dl):
pass