ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
3.93 kB
import glob
import json
import os
import pickle
import random
import re
import subprocess
from functools import partial
import librosa.core
import numpy as np
import torch
import torch.distributions
import torch.distributed as dist
import torch.optim
import torch.utils.data
from utils.commons.indexed_datasets import IndexedDataset
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import pandas as pd
from tqdm import tqdm
import csv
from utils.commons.hparams import hparams, set_hparams
from utils.commons.meters import Timer
from data_util.face3d_helper import Face3DHelper
from utils.audio import librosa_wav2mfcc
from utils.commons.dataset_utils import collate_xd
class SyncNet_Dataset(Dataset):
def __init__(self, prefix='train', data_dir=None):
self.hparams = hparams
self.db_key = prefix
self.ds_path = self.hparams['binary_data_dir'] if data_dir is None else data_dir
self.ds = None
self.sizes = None
self.x_maxframes = 200 # 50 video frames
self.face3d_helper = Face3DHelper('deep_3drecon/BFM')
self.x_multiply = 8
def __len__(self):
ds = self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
return len(ds)
def _get_item(self, index):
"""
This func is necessary to open files in multi-threads!
"""
if self.ds is None:
self.ds = IndexedDataset(f'{self.ds_path}/{self.db_key}')
return self.ds[index]
def __getitem__(self, idx):
raw_item = self._get_item(idx)
if raw_item is None:
print("loading from binary data failed!")
return None
item = {
'idx': idx,
'item_id': raw_item['img_dir'],
'id': torch.from_numpy(raw_item['id']).float(), # [T_x, c=80]
'exp': torch.from_numpy(raw_item['exp']).float(), # [T_x, c=80]
}
if item['id'].shape[0] == 1: # global_id
item['id'] = item['id'].repeat([item['exp'].shape[0], 1])
item['hubert'] = torch.from_numpy(raw_item['hubert']).float() # [T_x, 1024]
x_len = len(item['hubert'])
y_len = x_len // 2 # video is 25fps
item['id'] = item['id'][:y_len]
item['exp'] = item['exp'][:y_len]
# randomly select a fixed-length clip
start_frames = random.randint(0, max(0, x_len - self.x_maxframes))
start_frames = start_frames // 2 * 2
item['hubert'] = item['hubert'][start_frames: start_frames + self.x_maxframes]
item['id'] = item['id'][start_frames//2: start_frames//2 + self.x_maxframes//2]
item['exp'] = item['exp'][start_frames//2: start_frames//2 + self.x_maxframes//2]
return item
def get_dataloader(self, batch_size=1, num_workers=0):
loader = DataLoader(self, pin_memory=True,collate_fn=self.collater, batch_size=batch_size, num_workers=num_workers)
return loader
def collater(self, samples):
if len(samples) == 0:
return None
x_len = max(s['hubert'].size(0) for s in samples)
y_len = x_len // 2
batch = {
'item_id': [s['item_id'] for s in samples],
}
batch['hubert'] = collate_xd([s["hubert"] for s in samples], max_len=x_len, pad_idx=0) # [b, t_max_y, 64]
batch['x_mask'] = (batch['hubert'].abs().sum(dim=-1) > 0).float() # [b, t_max_x]
batch['id'] = collate_xd([s["id"] for s in samples], max_len=y_len, pad_idx=0) # [b, t_max, 1]
batch['exp'] = collate_xd([s["exp"] for s in samples], max_len=y_len, pad_idx=0) # [b, t_max, 1]
batch['y_mask'] = (batch['id'].abs().sum(dim=-1) > 0).float() # [b, t_max_y]
return batch
if __name__ == '__main__':
os.environ["OMP_NUM_THREADS"] = "1"
ds = SyncNet_Dataset("train", 'data/binary/th1kh')
dl = ds.get_dataloader()
for b in tqdm(dl):
pass