ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
19 kB
import math
import torch
from typing import Optional, Tuple
from torch import nn
from utils.nn.seq_utils import get_incremental_state, set_incremental_state, softmax, make_positions
import torch.nn.functional as F
# from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
DEFAULT_MAX_SOURCE_POSITIONS = 20000
DEFAULT_MAX_TARGET_POSITIONS = 20000
class RotaryEmbeddings(nn.Module):
cos: torch.Tensor
sin: torch.Tensor
theta: torch.Tensor
def __init__(
self,
width: int,
*,
seq_len: int = 4000,
base: int = 10000,
device: Optional[torch.device] = None,
):
"""Rotary embeddings (Su et al., 2021) layer. The rotary embedding
will be precomputed for up to 'seq _len' positions. The embedding
will be recomputed when a longer sequence is found in the input.
:param width:
Rotary embedding dimensionality, must be even.
:param seq_len:
Number of positons to initially precompute.
:param base:
The base used for Θ_i, determines the cycle length of the
embeddings.
:param device: Device on which the module is to be initialized.
"""
super().__init__()
if width % 2:
raise ValueError(f"Width of rotary embeddings must be even, was: {width}")
# Ignore allocations on the meta device as we don't persist our buffer,
# i.e., we don't expect the backing tensor to be replaced with pretrained weights.
if device is not None and device.type == "meta":
device = None
# Θ_i = 10000^(-2(i-1)/d)
theta = torch.pow(
base, -torch.arange(0, width, 2, dtype=torch.float, device=device) / width
)
self.register_buffer("theta", theta, persistent=False)
self._create_rotary_embed(width=width, length=seq_len)
def _create_rotary_embed(self, *, width: int, length: int):
# mΘ
position = torch.arange(length, device=self.theta.device).unsqueeze(1)
m_theta = position * self.theta.unsqueeze(0)
# We apply both sin and cos twice (see Eq 15, 34), but the ordering
# is changed for compatibility with most common implementations.
m_theta = torch.cat([m_theta, m_theta], dim=-1)
re_cos = m_theta.cos().view([length, width]).half()
re_sin = m_theta.sin().view([length, width]).half()
self.register_buffer("cos", re_cos, persistent=False)
self.register_buffer("sin", re_sin, persistent=False)
def _rotate(self, input: torch.Tensor):
"""Rotate the input tensor by half of its innermost width.
input (Tensor): array to rotate.
RETURNS (Tensor): rotated array.
Shapes:
input - (..., width)
output - (..., width)
"""
half_idx = input.shape[-1] // 2
input_1 = -input[..., half_idx:]
input_2 = input[..., :half_idx]
return torch.cat([input_1, input_2], dim=-1)
def forward(self, input: torch.Tensor, *, positions: Optional[torch.Tensor] = None):
"""
Apply rotary embeddings to an array.
:param input: Array to apply the rotary embeddings to.
:param positions: positions of the inputs. If no positions are
provided, they are assumed to be [0, seq_len).
:return: Array with the rotary embeddings applied.
Shapes:
input - (batch_size, num_heads, seq_len, width_per_head)
positions - (batch_size, seq_len)
output - (batch_size, num_heads, seq_len, width_per_head)
"""
batch_size, _, seq_len, width = input.shape
if positions is None:
# Fastpath: positions from [0..seq_len), avoid indexing.
if self.cos.size(-2) < seq_len:
self._create_rotary_embed(width=width, length=seq_len)
rot_cos = self.cos[:seq_len, :].view(1, 1, seq_len, width)
rot_sin = self.sin[:seq_len, :].view(1, 1, seq_len, width)
else:
max_len = int(positions.max()) + 1
if self.cos.size(-2) < max_len:
self._create_rotary_embed(width=width, length=max_len)
# Flatten positions to index cos/sin arrays, then unflatten.
#
# Example shapes:
#
# positions_flat - (batch_size * seq_len)
# self.cos - (max_len, width)
# rot_cos - (batch_size, seq_len, width)
positions_flat = positions.view(-1)
rot_cos = self.cos[positions_flat].view(batch_size, 1, seq_len, width)
rot_sin = self.sin[positions_flat].view(batch_size, 1, seq_len, width)
# Eq 34 with ordering changed for compatibility.
return rot_cos * input + rot_sin * self._rotate(input)
class LayerNorm(nn.Module):
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
def __init__(self, ndim, bias=False):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0.):
super().__init__()
# Typically, bias = True in Linears and LayerNorms, like GPT-2. But we set bias = False: a bit better and faster (following https://github.com/karpathy/nanoGPT)
assert embed_dim % num_heads == 0
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(embed_dim, 3 * embed_dim, bias=False)
# output projection
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)
# rotary embeddings
self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads)
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
def forward(
self,
query, key, value,
spk_pos_ids_flat=None,
incremental_state=None,
need_weights=True,
static_kv=False,
attn_mask=None,
need_head_weights=False,
enc_dec_attn_constraint_mask=None,
):
"""Input shape: Time x Batch x Channel
Args:
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
else:
saved_state = None
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(query).split(self.embed_dim, dim=2)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
# Apply rot embedding and store incremental_state
q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0]
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if 'prev_key' in saved_state:
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
k = torch.cat((prev_key, k), dim=1)
if 'prev_value' in saved_state:
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
v = torch.cat((prev_value, v), dim=1)
saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view(
bsz, self.num_heads, -1, self.head_dim)
self._set_input_buffer(incremental_state, saved_state)
if incremental_state is not None:
key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0)
else:
key_pos = spk_pos_ids_flat
k = self.rotary_embeds(k[None, :], positions=key_pos)[0]
src_len = k.size(1)
# Start Attention
if self.flash:
# efficient attention using Flash Attention CUDA kernels
attn = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=0,
is_causal=False)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
# Flash Attn 2
# from flash_attn import flash_attn_func
# q, k, v = q.transpose(0, 1)[None, :], k.transpose(0, 1)[None, :], v.transpose(0, 1)[None, :]
# attn = flash_attn_func(q, k, v, dropout_p=0.0, causal=False)[0].contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_logits = None
else:
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
if len(attn_mask.shape) == 2:
attn_mask = attn_mask.unsqueeze(0)
elif len(attn_mask.shape) == 3:
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape(
bsz * self.num_heads, tgt_len, src_len)
attn_weights = attn_weights + attn_mask
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights_float = softmax(attn_weights, dim=-1)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
else:
attn_weights = None
return attn, (attn_weights, attn_logits)
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'attn_state',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'attn_state',
buffer,
)
def clear_buffer(self, incremental_state=None):
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
del saved_state['prev_key']
if 'prev_value' in saved_state:
del saved_state['prev_value']
self._set_input_buffer(incremental_state, saved_state)
class TransformerFFNLayer(nn.Module):
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'):
super().__init__()
self.kernel_size = kernel_size
self.dropout = dropout
self.act = act
if padding == 'SAME':
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2, bias=False)
elif padding == 'LEFT':
self.ffn_1 = nn.Sequential(
nn.ConstantPad1d((kernel_size - 1, 0), 0.0),
nn.Conv1d(hidden_size, filter_size, kernel_size, bias=False)
)
self.ffn_2 = nn.Linear(filter_size, hidden_size, bias=False)
def forward(self, x, incremental_state=None):
# x: T x B x C
if incremental_state is not None:
T_inp = x.shape[0]
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
prev_input = saved_state['prev_input']
x = torch.cat((prev_input, x), dim=0)
x = x[-self.kernel_size:]
saved_state['prev_input'] = x
self._set_input_buffer(incremental_state, saved_state)
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1)
x = x * self.kernel_size ** -0.5
if incremental_state is not None:
x = x[-T_inp:]
# if self.act == 'gelu':
# x = F.gelu(x)
# if self.act == 'relu':
# x = F.relu(x)
x = F.silu(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.ffn_2(x)
return x
def _get_input_buffer(self, incremental_state):
return get_incremental_state(
self,
incremental_state,
'f',
) or {}
def _set_input_buffer(self, incremental_state, buffer):
set_incremental_state(
self,
incremental_state,
'f',
buffer,
)
def clear_buffer(self, incremental_state):
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_input' in saved_state:
del saved_state['prev_input']
self._set_input_buffer(incremental_state, saved_state)
class GPTBlock(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1,
kernel_size=9, ffn_hidden_size=1024, act='gelu', post_ln=False, norm_cls=LayerNorm):
super().__init__()
self.c = c
self.dropout = dropout
self.layer_norm1 = norm_cls(c)
self.self_attn = CausalSelfAttention(
c, num_heads, dropout=attention_dropout
)
self.layer_norm2 = norm_cls(c)
self.ffn = TransformerFFNLayer(
c, ffn_hidden_size, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act)
self.post_ln = post_ln
def forward(
self,
x,
encoder_out=None,
encoder_padding_mask=None,
incremental_state=None,
self_attn_mask=None,
attn_out=None,
spk_pos_ids_flat=None,
**kwargs,
):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
residual = x
if not self.post_ln:
x = self.layer_norm1(x)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
incremental_state=incremental_state,
attn_mask=self_attn_mask,
spk_pos_ids_flat=spk_pos_ids_flat,
need_weights=False
)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
if self.post_ln:
x = self.layer_norm1(x)
attn_logits = None
residual = x
if not self.post_ln:
x = self.layer_norm2(x)
x = self.ffn(x, incremental_state=incremental_state)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
if self.post_ln:
x = self.layer_norm2(x)
return x, attn_logits
def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None):
self.encoder_attn.clear_buffer(incremental_state)
self.ffn.clear_buffer(incremental_state)
def set_buffer(self, name, tensor, incremental_state):
return set_incremental_state(self, incremental_state, name, tensor)
class GPTLayer(nn.Module):
def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=8, ffn_hidden_size=1024, post_ln=False,
lm_num_layers=10, norm_cls=LayerNorm):
super().__init__()
self.hidden_size = hidden_size
self.dropout = dropout
self.num_heads = num_heads
self.op = GPTBlock(
hidden_size, num_heads, dropout=dropout,
attention_dropout=0.0, relu_dropout=dropout,
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size,
post_ln=post_ln, norm_cls=norm_cls)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith('ffn_2.weight') or pn.endswith('out_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * lm_num_layers))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
@torch.autocast(device_type='cuda')
def forward(self, x, **kwargs):
return self.op(x, **kwargs)
def clear_buffer(self, *args):
return self.op.clear_buffer(*args)
def set_buffer(self, *args):
return self.op.set_buffer(*args)