|
import copy |
|
import functools |
|
import os |
|
|
|
import blobfile as bf |
|
import numpy as np |
|
import torch as th |
|
import torch.distributed as dist |
|
from torch.nn.parallel.distributed import DistributedDataParallel as DDP |
|
from torch.optim import AdamW |
|
|
|
from . import dist_util, logger |
|
from .fp16_util import ( |
|
make_master_params, |
|
master_params_to_model_params, |
|
model_grads_to_master_grads, |
|
unflatten_master_params, |
|
zero_grad, |
|
) |
|
from .nn import update_ema |
|
from .resample import LossAwareSampler, UniformSampler |
|
|
|
|
|
|
|
|
|
INITIAL_LOG_LOSS_SCALE = 20.0 |
|
|
|
|
|
class TrainLoop: |
|
def __init__( |
|
self, |
|
*, |
|
model, |
|
diffusion, |
|
data, |
|
batch_size, |
|
microbatch, |
|
lr, |
|
ema_rate, |
|
log_interval, |
|
save_interval, |
|
resume_checkpoint, |
|
use_fp16=False, |
|
fp16_scale_growth=1e-3, |
|
schedule_sampler=None, |
|
weight_decay=0.0, |
|
lr_anneal_steps=0, |
|
): |
|
self.model = model |
|
self.diffusion = diffusion |
|
self.data = data |
|
self.batch_size = batch_size |
|
self.microbatch = microbatch if microbatch > 0 else batch_size |
|
self.lr = lr |
|
self.ema_rate = ( |
|
[ema_rate] |
|
if isinstance(ema_rate, float) |
|
else [float(x) for x in ema_rate.split(",")] |
|
) |
|
self.log_interval = log_interval |
|
self.save_interval = save_interval |
|
self.resume_checkpoint = resume_checkpoint |
|
self.use_fp16 = use_fp16 |
|
self.fp16_scale_growth = fp16_scale_growth |
|
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion) |
|
self.weight_decay = weight_decay |
|
self.lr_anneal_steps = lr_anneal_steps |
|
|
|
self.step = 0 |
|
self.resume_step = 0 |
|
self.global_batch = self.batch_size * dist.get_world_size() |
|
|
|
self.model_params = list(self.model.parameters()) |
|
self.master_params = self.model_params |
|
self.lg_loss_scale = INITIAL_LOG_LOSS_SCALE |
|
self.sync_cuda = th.cuda.is_available() |
|
|
|
self._load_and_sync_parameters() |
|
if self.use_fp16: |
|
self._setup_fp16() |
|
|
|
self.opt = AdamW(self.master_params, lr=self.lr, weight_decay=self.weight_decay) |
|
if self.resume_step: |
|
self._load_optimizer_state() |
|
|
|
|
|
self.ema_params = [ |
|
self._load_ema_parameters(rate) for rate in self.ema_rate |
|
] |
|
else: |
|
self.ema_params = [ |
|
copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate)) |
|
] |
|
|
|
if th.cuda.is_available(): |
|
self.use_ddp = True |
|
self.ddp_model = DDP( |
|
self.model, |
|
device_ids=[dist_util.dev()], |
|
output_device=dist_util.dev(), |
|
broadcast_buffers=False, |
|
bucket_cap_mb=128, |
|
find_unused_parameters=False, |
|
) |
|
else: |
|
if dist.get_world_size() > 1: |
|
logger.warn( |
|
"Distributed training requires CUDA. " |
|
"Gradients will not be synchronized properly!" |
|
) |
|
self.use_ddp = False |
|
self.ddp_model = self.model |
|
|
|
def _load_and_sync_parameters(self): |
|
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint |
|
|
|
if resume_checkpoint: |
|
self.resume_step = parse_resume_step_from_filename(resume_checkpoint) |
|
if dist.get_rank() == 0: |
|
logger.log(f"loading model from checkpoint: {resume_checkpoint}...") |
|
self.model.load_state_dict( |
|
dist_util.load_state_dict( |
|
resume_checkpoint, map_location=dist_util.dev() |
|
) |
|
) |
|
|
|
dist_util.sync_params(self.model.parameters()) |
|
|
|
def _load_ema_parameters(self, rate): |
|
ema_params = copy.deepcopy(self.master_params) |
|
|
|
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint |
|
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate) |
|
if ema_checkpoint: |
|
if dist.get_rank() == 0: |
|
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...") |
|
state_dict = dist_util.load_state_dict( |
|
ema_checkpoint, map_location=dist_util.dev() |
|
) |
|
ema_params = self._state_dict_to_master_params(state_dict) |
|
|
|
dist_util.sync_params(ema_params) |
|
return ema_params |
|
|
|
def _load_optimizer_state(self): |
|
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint |
|
opt_checkpoint = bf.join( |
|
bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt" |
|
) |
|
if bf.exists(opt_checkpoint): |
|
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") |
|
state_dict = dist_util.load_state_dict( |
|
opt_checkpoint, map_location=dist_util.dev() |
|
) |
|
self.opt.load_state_dict(state_dict) |
|
|
|
def _setup_fp16(self): |
|
self.master_params = make_master_params(self.model_params) |
|
self.model.convert_to_fp16() |
|
|
|
def run_loop(self): |
|
while ( |
|
not self.lr_anneal_steps |
|
or self.step + self.resume_step < self.lr_anneal_steps |
|
): |
|
batch, cond = next(self.data) |
|
self.run_step(batch, cond) |
|
if self.step % self.log_interval == 0: |
|
logger.dumpkvs() |
|
if self.step % self.save_interval == 0: |
|
self.save() |
|
|
|
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0: |
|
return |
|
self.step += 1 |
|
|
|
if (self.step - 1) % self.save_interval != 0: |
|
self.save() |
|
|
|
def run_step(self, batch, cond): |
|
self.forward_backward(batch, cond) |
|
if self.use_fp16: |
|
self.optimize_fp16() |
|
else: |
|
self.optimize_normal() |
|
self.log_step() |
|
|
|
def forward_backward(self, batch, cond): |
|
zero_grad(self.model_params) |
|
for i in range(0, batch.shape[0], self.microbatch): |
|
micro = batch[i : i + self.microbatch].to(dist_util.dev()) |
|
micro_cond = { |
|
k: v[i : i + self.microbatch].to(dist_util.dev()) |
|
for k, v in cond.items() |
|
} |
|
last_batch = (i + self.microbatch) >= batch.shape[0] |
|
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev()) |
|
|
|
compute_losses = functools.partial( |
|
self.diffusion.training_losses, |
|
self.ddp_model, |
|
micro, |
|
t, |
|
model_kwargs=micro_cond, |
|
) |
|
|
|
if last_batch or not self.use_ddp: |
|
losses = compute_losses() |
|
else: |
|
with self.ddp_model.no_sync(): |
|
losses = compute_losses() |
|
|
|
if isinstance(self.schedule_sampler, LossAwareSampler): |
|
self.schedule_sampler.update_with_local_losses( |
|
t, losses["loss"].detach() |
|
) |
|
|
|
loss = (losses["loss"] * weights).mean() |
|
log_loss_dict( |
|
self.diffusion, t, {k: v * weights for k, v in losses.items()} |
|
) |
|
if self.use_fp16: |
|
loss_scale = 2 ** self.lg_loss_scale |
|
(loss * loss_scale).backward() |
|
else: |
|
loss.backward() |
|
|
|
def optimize_fp16(self): |
|
if any(not th.isfinite(p.grad).all() for p in self.model_params): |
|
self.lg_loss_scale -= 1 |
|
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}") |
|
return |
|
|
|
model_grads_to_master_grads(self.model_params, self.master_params) |
|
self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale)) |
|
self._log_grad_norm() |
|
self._anneal_lr() |
|
self.opt.step() |
|
for rate, params in zip(self.ema_rate, self.ema_params): |
|
update_ema(params, self.master_params, rate=rate) |
|
master_params_to_model_params(self.model_params, self.master_params) |
|
self.lg_loss_scale += self.fp16_scale_growth |
|
|
|
def optimize_normal(self): |
|
self._log_grad_norm() |
|
self._anneal_lr() |
|
self.opt.step() |
|
for rate, params in zip(self.ema_rate, self.ema_params): |
|
update_ema(params, self.master_params, rate=rate) |
|
|
|
def _log_grad_norm(self): |
|
sqsum = 0.0 |
|
for p in self.master_params: |
|
sqsum += (p.grad ** 2).sum().item() |
|
logger.logkv_mean("grad_norm", np.sqrt(sqsum)) |
|
|
|
def _anneal_lr(self): |
|
if not self.lr_anneal_steps: |
|
return |
|
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps |
|
lr = self.lr * (1 - frac_done) |
|
for param_group in self.opt.param_groups: |
|
param_group["lr"] = lr |
|
|
|
def log_step(self): |
|
logger.logkv("step", self.step + self.resume_step) |
|
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch) |
|
if self.use_fp16: |
|
logger.logkv("lg_loss_scale", self.lg_loss_scale) |
|
|
|
def save(self): |
|
def save_checkpoint(rate, params): |
|
state_dict = self._master_params_to_state_dict(params) |
|
if dist.get_rank() == 0: |
|
logger.log(f"saving model {rate}...") |
|
if not rate: |
|
filename = f"model{(self.step+self.resume_step):06d}.pt" |
|
else: |
|
filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt" |
|
with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f: |
|
th.save(state_dict, f) |
|
|
|
save_checkpoint(0, self.master_params) |
|
for rate, params in zip(self.ema_rate, self.ema_params): |
|
save_checkpoint(rate, params) |
|
|
|
if dist.get_rank() == 0: |
|
with bf.BlobFile( |
|
bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"), |
|
"wb", |
|
) as f: |
|
th.save(self.opt.state_dict(), f) |
|
|
|
dist.barrier() |
|
|
|
def _master_params_to_state_dict(self, master_params): |
|
if self.use_fp16: |
|
master_params = unflatten_master_params( |
|
self.model.parameters(), master_params |
|
) |
|
state_dict = self.model.state_dict() |
|
for i, (name, _value) in enumerate(self.model.named_parameters()): |
|
assert name in state_dict |
|
state_dict[name] = master_params[i] |
|
return state_dict |
|
|
|
def _state_dict_to_master_params(self, state_dict): |
|
params = [state_dict[name] for name, _ in self.model.named_parameters()] |
|
if self.use_fp16: |
|
return make_master_params(params) |
|
else: |
|
return params |
|
|
|
|
|
def parse_resume_step_from_filename(filename): |
|
""" |
|
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the |
|
checkpoint's number of steps. |
|
""" |
|
split = filename.split("model") |
|
if len(split) < 2: |
|
return 0 |
|
split1 = split[-1].split(".")[0] |
|
try: |
|
return int(split1) |
|
except ValueError: |
|
return 0 |
|
|
|
|
|
def get_blob_logdir(): |
|
return os.environ.get("DIFFUSION_BLOB_LOGDIR", logger.get_dir()) |
|
|
|
|
|
def find_resume_checkpoint(): |
|
|
|
|
|
return None |
|
|
|
|
|
def find_ema_checkpoint(main_checkpoint, step, rate): |
|
if main_checkpoint is None: |
|
return None |
|
filename = f"ema_{rate}_{(step):06d}.pt" |
|
path = bf.join(bf.dirname(main_checkpoint), filename) |
|
if bf.exists(path): |
|
return path |
|
return None |
|
|
|
|
|
def log_loss_dict(diffusion, ts, losses): |
|
for key, values in losses.items(): |
|
logger.logkv_mean(key, values.mean().item()) |
|
|
|
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()): |
|
quartile = int(4 * sub_t / diffusion.num_timesteps) |
|
logger.logkv_mean(f"{key}_q{quartile}", sub_loss) |
|
|