|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from modules.commons.layers import Embedding |
|
|
|
|
|
def convert_pad_shape(pad_shape): |
|
l = pad_shape[::-1] |
|
pad_shape = [item for sublist in l for item in sublist] |
|
return pad_shape |
|
|
|
|
|
def shift_1d(x): |
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] |
|
return x |
|
|
|
|
|
def sequence_mask(length, max_length=None): |
|
if max_length is None: |
|
max_length = length.max() |
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device) |
|
return x.unsqueeze(0) < length.unsqueeze(1) |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., |
|
window_size=None, block_length=None, pre_ln=False, **kwargs): |
|
super().__init__() |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
self.block_length = block_length |
|
self.pre_ln = pre_ln |
|
|
|
self.drop = nn.Dropout(p_dropout) |
|
self.attn_layers = nn.ModuleList() |
|
self.norm_layers_1 = nn.ModuleList() |
|
self.ffn_layers = nn.ModuleList() |
|
self.norm_layers_2 = nn.ModuleList() |
|
for i in range(self.n_layers): |
|
self.attn_layers.append( |
|
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, window_size=window_size, |
|
p_dropout=p_dropout, block_length=block_length)) |
|
self.norm_layers_1.append(LayerNorm(hidden_channels)) |
|
self.ffn_layers.append( |
|
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) |
|
self.norm_layers_2.append(LayerNorm(hidden_channels)) |
|
if pre_ln: |
|
self.last_ln = LayerNorm(hidden_channels) |
|
|
|
def forward(self, x, x_mask, attn_mask=1): |
|
if isinstance(attn_mask, torch.Tensor): |
|
attn_mask = attn_mask[:, None] |
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) * attn_mask |
|
for i in range(self.n_layers): |
|
x = x * x_mask |
|
x_ = x |
|
if self.pre_ln: |
|
x = self.norm_layers_1[i](x) |
|
y = self.attn_layers[i](x, x, attn_mask) |
|
y = self.drop(y) |
|
x = x_ + y |
|
if not self.pre_ln: |
|
x = self.norm_layers_1[i](x) |
|
|
|
x_ = x |
|
if self.pre_ln: |
|
x = self.norm_layers_2[i](x) |
|
y = self.ffn_layers[i](x, x_mask) |
|
y = self.drop(y) |
|
x = x_ + y |
|
if not self.pre_ln: |
|
x = self.norm_layers_2[i](x) |
|
if self.pre_ln: |
|
x = self.last_ln(x) |
|
x = x * x_mask |
|
return x |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, channels, out_channels, n_heads, window_size=None, heads_share=True, p_dropout=0., |
|
block_length=None, proximal_bias=False, proximal_init=False): |
|
super().__init__() |
|
assert channels % n_heads == 0 |
|
|
|
self.channels = channels |
|
self.out_channels = out_channels |
|
self.n_heads = n_heads |
|
self.window_size = window_size |
|
self.heads_share = heads_share |
|
self.block_length = block_length |
|
self.proximal_bias = proximal_bias |
|
self.p_dropout = p_dropout |
|
self.attn = None |
|
|
|
self.k_channels = channels // n_heads |
|
self.conv_q = nn.Conv1d(channels, channels, 1) |
|
self.conv_k = nn.Conv1d(channels, channels, 1) |
|
self.conv_v = nn.Conv1d(channels, channels, 1) |
|
if window_size is not None: |
|
n_heads_rel = 1 if heads_share else n_heads |
|
rel_stddev = self.k_channels ** -0.5 |
|
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) |
|
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) |
|
self.conv_o = nn.Conv1d(channels, out_channels, 1) |
|
self.drop = nn.Dropout(p_dropout) |
|
|
|
nn.init.xavier_uniform_(self.conv_q.weight) |
|
nn.init.xavier_uniform_(self.conv_k.weight) |
|
if proximal_init: |
|
self.conv_k.weight.data.copy_(self.conv_q.weight.data) |
|
self.conv_k.bias.data.copy_(self.conv_q.bias.data) |
|
nn.init.xavier_uniform_(self.conv_v.weight) |
|
|
|
def forward(self, x, c, attn_mask=None): |
|
q = self.conv_q(x) |
|
k = self.conv_k(c) |
|
v = self.conv_v(c) |
|
|
|
x, self.attn = self.attention(q, k, v, mask=attn_mask) |
|
|
|
x = self.conv_o(x) |
|
return x |
|
|
|
def attention(self, query, key, value, mask=None): |
|
|
|
b, d, t_s, t_t = (*key.size(), query.size(2)) |
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) |
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) |
|
|
|
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels) |
|
if self.window_size is not None: |
|
assert t_s == t_t, "Relative attention is only available for self-attention." |
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) |
|
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings) |
|
rel_logits = self._relative_position_to_absolute_position(rel_logits) |
|
scores_local = rel_logits / math.sqrt(self.k_channels) |
|
scores = scores + scores_local |
|
if self.proximal_bias: |
|
assert t_s == t_t, "Proximal bias is only available for self-attention." |
|
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) |
|
if mask is not None: |
|
scores = scores.masked_fill(mask == 0, -1e4) |
|
if self.block_length is not None: |
|
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) |
|
scores = scores * block_mask + -1e4 * (1 - block_mask) |
|
p_attn = F.softmax(scores, dim=-1) |
|
p_attn = self.drop(p_attn) |
|
output = torch.matmul(p_attn, value) |
|
if self.window_size is not None: |
|
relative_weights = self._absolute_position_to_relative_position(p_attn) |
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) |
|
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) |
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t) |
|
return output, p_attn |
|
|
|
def _matmul_with_relative_values(self, x, y): |
|
""" |
|
x: [b, h, l, m] |
|
y: [h or 1, m, d] |
|
ret: [b, h, l, d] |
|
""" |
|
ret = torch.matmul(x, y.unsqueeze(0)) |
|
return ret |
|
|
|
def _matmul_with_relative_keys(self, x, y): |
|
""" |
|
x: [b, h, l, d] |
|
y: [h or 1, m, d] |
|
ret: [b, h, l, m] |
|
""" |
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) |
|
return ret |
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length): |
|
max_relative_position = 2 * self.window_size + 1 |
|
|
|
pad_length = max(length - (self.window_size + 1), 0) |
|
slice_start_position = max((self.window_size + 1) - length, 0) |
|
slice_end_position = slice_start_position + 2 * length - 1 |
|
if pad_length > 0: |
|
padded_relative_embeddings = F.pad( |
|
relative_embeddings, |
|
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) |
|
else: |
|
padded_relative_embeddings = relative_embeddings |
|
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] |
|
return used_relative_embeddings |
|
|
|
def _relative_position_to_absolute_position(self, x): |
|
""" |
|
x: [b, h, l, 2*l-1] |
|
ret: [b, h, l, l] |
|
""" |
|
batch, heads, length, _ = x.size() |
|
|
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) |
|
|
|
|
|
x_flat = x.view([batch, heads, length * 2 * length]) |
|
x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])) |
|
|
|
|
|
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:] |
|
return x_final |
|
|
|
def _absolute_position_to_relative_position(self, x): |
|
""" |
|
x: [b, h, l, l] |
|
ret: [b, h, l, 2*l-1] |
|
""" |
|
batch, heads, length, _ = x.size() |
|
|
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])) |
|
x_flat = x.view([batch, heads, -1]) |
|
|
|
x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]])) |
|
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] |
|
return x_final |
|
|
|
def _attention_bias_proximal(self, length): |
|
"""Bias for self-attention to encourage attention to close positions. |
|
Args: |
|
length: an integer scalar. |
|
Returns: |
|
a Tensor with shape [1, 1, length, length] |
|
""" |
|
r = torch.arange(length, dtype=torch.float32) |
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) |
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) |
|
|
|
|
|
class FFN(nn.Module): |
|
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.filter_channels = filter_channels |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.activation = activation |
|
|
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) |
|
self.conv_2 = nn.Conv1d(filter_channels, out_channels, 1) |
|
self.drop = nn.Dropout(p_dropout) |
|
|
|
def forward(self, x, x_mask): |
|
x = self.conv_1(x * x_mask) |
|
if self.activation == "gelu": |
|
x = x * torch.sigmoid(1.702 * x) |
|
else: |
|
x = torch.relu(x) |
|
x = self.drop(x) |
|
x = self.conv_2(x * x_mask) |
|
return x * x_mask |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, channels, eps=1e-4): |
|
super().__init__() |
|
self.channels = channels |
|
self.eps = eps |
|
|
|
self.gamma = nn.Parameter(torch.ones(channels)) |
|
self.beta = nn.Parameter(torch.zeros(channels)) |
|
|
|
def forward(self, x): |
|
n_dims = len(x.shape) |
|
mean = torch.mean(x, 1, keepdim=True) |
|
variance = torch.mean((x - mean) ** 2, 1, keepdim=True) |
|
|
|
x = (x - mean) * torch.rsqrt(variance + self.eps) |
|
|
|
shape = [1, -1] + [1] * (n_dims - 2) |
|
x = x * self.gamma.view(*shape) + self.beta.view(*shape) |
|
return x |
|
|
|
|
|
class ConvReluNorm(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.hidden_channels = hidden_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = kernel_size |
|
self.n_layers = n_layers |
|
self.p_dropout = p_dropout |
|
assert n_layers > 1, "Number of layers should be larger than 0." |
|
|
|
self.conv_layers = nn.ModuleList() |
|
self.norm_layers = nn.ModuleList() |
|
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.relu_drop = nn.Sequential( |
|
nn.ReLU(), |
|
nn.Dropout(p_dropout)) |
|
for _ in range(n_layers - 1): |
|
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) |
|
self.norm_layers.append(LayerNorm(hidden_channels)) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) |
|
self.proj.weight.data.zero_() |
|
self.proj.bias.data.zero_() |
|
|
|
def forward(self, x, x_mask): |
|
x_org = x |
|
for i in range(self.n_layers): |
|
x = self.conv_layers[i](x * x_mask) |
|
x = self.norm_layers[i](x) |
|
x = self.relu_drop(x) |
|
x = x_org + self.proj(x) |
|
return x * x_mask |
|
|
|
|
|
class RelTransformerEncoder(nn.Module): |
|
def __init__(self, |
|
n_vocab, |
|
out_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout=0.0, |
|
window_size=4, |
|
block_length=None, |
|
in_channels=None, |
|
prenet=True, |
|
pre_ln=True, |
|
): |
|
|
|
super().__init__() |
|
|
|
self.n_vocab = n_vocab |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.window_size = window_size |
|
self.block_length = block_length |
|
self.prenet = prenet |
|
if n_vocab > 0: |
|
self.emb = Embedding(n_vocab, hidden_channels, padding_idx=0) |
|
|
|
if prenet: |
|
if in_channels is None: |
|
in_channels = hidden_channels |
|
self.pre = ConvReluNorm(in_channels, in_channels, in_channels, |
|
kernel_size=5, n_layers=3, p_dropout=0) |
|
if in_channels is not None and in_channels != hidden_channels: |
|
self.encoder_inp_proj = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.encoder = Encoder( |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
window_size=window_size, |
|
block_length=block_length, |
|
pre_ln=pre_ln, |
|
) |
|
|
|
def forward(self, x, x_mask=None, other_embeds=0, attn_mask=1): |
|
if self.n_vocab > 0: |
|
x_lengths = (x > 0).long().sum(-1) |
|
x = self.emb(x) * math.sqrt(self.hidden_channels) |
|
else: |
|
x_lengths = (x.abs().sum(-1) > 0).long().sum(-1) |
|
x = x + other_embeds |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
|
|
if self.prenet: |
|
x = self.pre(x, x_mask) |
|
self.prenet_out = x.transpose(1, 2) |
|
if hasattr(self, 'encoder_inp_proj'): |
|
x = self.encoder_inp_proj(x) * x_mask |
|
x = self.encoder(x, x_mask, attn_mask) |
|
return x.transpose(1, 2) |
|
|