|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import Parameter, Linear |
|
from modules.commons.layers import LayerNorm, Embedding |
|
from utils.nn.seq_utils import get_incremental_state, set_incremental_state, softmax, make_positions |
|
import torch.nn.functional as F |
|
|
|
DEFAULT_MAX_SOURCE_POSITIONS = 3000 |
|
DEFAULT_MAX_TARGET_POSITIONS = 3000 |
|
|
|
|
|
class SinusoidalPositionalEmbedding(nn.Module): |
|
"""This module produces sinusoidal positional embeddings of any length. |
|
|
|
Padding symbols are ignored. |
|
""" |
|
|
|
def __init__(self, embedding_dim, padding_idx, init_size=1024): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.padding_idx = padding_idx |
|
self.weights = SinusoidalPositionalEmbedding.get_embedding( |
|
init_size, |
|
embedding_dim, |
|
padding_idx, |
|
) |
|
self.register_buffer('_float_tensor', torch.FloatTensor(1)) |
|
|
|
@staticmethod |
|
def get_embedding(num_embeddings, embedding_dim, padding_idx=None): |
|
"""Build sinusoidal embeddings. |
|
|
|
This matches the implementation in tensor2tensor, but differs slightly |
|
from the description in Section 3.5 of "Attention Is All You Need". |
|
""" |
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) |
|
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) |
|
if embedding_dim % 2 == 1: |
|
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) |
|
if padding_idx is not None: |
|
emb[padding_idx, :] = 0 |
|
return emb |
|
|
|
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
bsz, seq_len = input.shape[:2] |
|
max_pos = self.padding_idx + 1 + seq_len |
|
if self.weights is None or max_pos > self.weights.size(0): |
|
|
|
self.weights = SinusoidalPositionalEmbedding.get_embedding( |
|
max_pos, |
|
self.embedding_dim, |
|
self.padding_idx, |
|
) |
|
self.weights = self.weights.to(self._float_tensor) |
|
|
|
if incremental_state is not None: |
|
|
|
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len |
|
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1) |
|
|
|
positions = make_positions(input, self.padding_idx) if positions is None else positions |
|
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() |
|
|
|
def max_positions(self): |
|
"""Maximum number of supported positions.""" |
|
return int(1e5) |
|
|
|
|
|
class TransformerFFNLayer(nn.Module): |
|
def __init__(self, hidden_size, filter_size, padding="SAME", kernel_size=1, dropout=0., act='gelu'): |
|
super().__init__() |
|
self.kernel_size = kernel_size |
|
self.dropout = dropout |
|
self.act = act |
|
if padding == 'SAME': |
|
self.ffn_1 = nn.Conv1d(hidden_size, filter_size, kernel_size, padding=kernel_size // 2) |
|
elif padding == 'LEFT': |
|
self.ffn_1 = nn.Sequential( |
|
nn.ConstantPad1d((kernel_size - 1, 0), 0.0), |
|
nn.Conv1d(hidden_size, filter_size, kernel_size) |
|
) |
|
self.ffn_2 = Linear(filter_size, hidden_size) |
|
|
|
def forward(self, x, incremental_state=None): |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if 'prev_input' in saved_state: |
|
prev_input = saved_state['prev_input'] |
|
x = torch.cat((prev_input, x), dim=0) |
|
x = x[-self.kernel_size:] |
|
saved_state['prev_input'] = x |
|
self._set_input_buffer(incremental_state, saved_state) |
|
|
|
x = self.ffn_1(x.permute(1, 2, 0)).permute(2, 0, 1) |
|
x = x * self.kernel_size ** -0.5 |
|
|
|
if incremental_state is not None: |
|
x = x[-1:] |
|
if self.act == 'gelu': |
|
x = F.gelu(x) |
|
if self.act == 'relu': |
|
x = F.relu(x) |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = self.ffn_2(x) |
|
return x |
|
|
|
def _get_input_buffer(self, incremental_state): |
|
return get_incremental_state( |
|
self, |
|
incremental_state, |
|
'f', |
|
) or {} |
|
|
|
def _set_input_buffer(self, incremental_state, buffer): |
|
set_incremental_state( |
|
self, |
|
incremental_state, |
|
'f', |
|
buffer, |
|
) |
|
|
|
def clear_buffer(self, incremental_state): |
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if 'prev_input' in saved_state: |
|
del saved_state['prev_input'] |
|
self._set_input_buffer(incremental_state, saved_state) |
|
|
|
|
|
class MultiheadAttention(nn.Module): |
|
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True, |
|
add_bias_kv=False, add_zero_attn=False, self_attention=False, |
|
encoder_decoder_attention=False): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim |
|
|
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" |
|
self.scaling = self.head_dim ** -0.5 |
|
|
|
self.self_attention = self_attention |
|
self.encoder_decoder_attention = encoder_decoder_attention |
|
|
|
assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and ' \ |
|
'value to be of the same size' |
|
|
|
if self.qkv_same_dim: |
|
self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) |
|
else: |
|
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) |
|
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) |
|
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) |
|
|
|
if bias: |
|
self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) |
|
else: |
|
self.register_parameter('in_proj_bias', None) |
|
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
if add_bias_kv: |
|
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) |
|
else: |
|
self.bias_k = self.bias_v = None |
|
|
|
self.add_zero_attn = add_zero_attn |
|
|
|
self.reset_parameters() |
|
|
|
self.enable_torch_version = False |
|
self.last_attn_probs = None |
|
|
|
def reset_parameters(self): |
|
if self.qkv_same_dim: |
|
nn.init.xavier_uniform_(self.in_proj_weight) |
|
else: |
|
nn.init.xavier_uniform_(self.k_proj_weight) |
|
nn.init.xavier_uniform_(self.v_proj_weight) |
|
nn.init.xavier_uniform_(self.q_proj_weight) |
|
|
|
nn.init.xavier_uniform_(self.out_proj.weight) |
|
if self.in_proj_bias is not None: |
|
nn.init.constant_(self.in_proj_bias, 0.) |
|
nn.init.constant_(self.out_proj.bias, 0.) |
|
if self.bias_k is not None: |
|
nn.init.xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
nn.init.xavier_normal_(self.bias_v) |
|
|
|
def forward( |
|
self, |
|
query, key, value, |
|
key_padding_mask=None, |
|
incremental_state=None, |
|
need_weights=True, |
|
static_kv=False, |
|
attn_mask=None, |
|
before_softmax=False, |
|
need_head_weights=False, |
|
enc_dec_attn_constraint_mask=None, |
|
reset_attn_weight=None |
|
): |
|
"""Input shape: Time x Batch x Channel |
|
|
|
Args: |
|
key_padding_mask (ByteTensor, optional): mask to exclude |
|
keys that are pads, of shape `(batch, src_len)`, where |
|
padding elements are indicated by 1s. |
|
need_weights (bool, optional): return the attention weights, |
|
averaged over heads (default: False). |
|
attn_mask (ByteTensor, optional): typically used to |
|
implement causal attention, where the mask prevents the |
|
attention from looking forward in time (default: None). |
|
before_softmax (bool, optional): return the raw attention |
|
weights and values before the attention softmax. |
|
need_head_weights (bool, optional): return the attention |
|
weights for each head. Implies *need_weights*. Default: |
|
return the average attention weights over all heads. |
|
""" |
|
if need_head_weights: |
|
need_weights = True |
|
|
|
tgt_len, bsz, embed_dim = query.size() |
|
assert embed_dim == self.embed_dim |
|
assert list(query.size()) == [tgt_len, bsz, embed_dim] |
|
|
|
if self.enable_torch_version and incremental_state is None and not static_kv and reset_attn_weight is None: |
|
if self.qkv_same_dim: |
|
return F.multi_head_attention_forward(query, key, value, |
|
self.embed_dim, self.num_heads, |
|
self.in_proj_weight, |
|
self.in_proj_bias, self.bias_k, self.bias_v, |
|
self.add_zero_attn, self.dropout, |
|
self.out_proj.weight, self.out_proj.bias, |
|
self.training, key_padding_mask, need_weights, |
|
attn_mask) |
|
else: |
|
return F.multi_head_attention_forward(query, key, value, |
|
self.embed_dim, self.num_heads, |
|
torch.empty([0]), |
|
self.in_proj_bias, self.bias_k, self.bias_v, |
|
self.add_zero_attn, self.dropout, |
|
self.out_proj.weight, self.out_proj.bias, |
|
self.training, key_padding_mask, need_weights, |
|
attn_mask, use_separate_proj_weight=True, |
|
q_proj_weight=self.q_proj_weight, |
|
k_proj_weight=self.k_proj_weight, |
|
v_proj_weight=self.v_proj_weight) |
|
|
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if 'prev_key' in saved_state: |
|
|
|
|
|
if static_kv: |
|
assert self.encoder_decoder_attention and not self.self_attention |
|
key = value = None |
|
else: |
|
saved_state = None |
|
|
|
if self.self_attention: |
|
|
|
q, k, v = self.in_proj_qkv(query) |
|
elif self.encoder_decoder_attention: |
|
|
|
q = self.in_proj_q(query) |
|
if key is None: |
|
assert value is None |
|
k = v = None |
|
else: |
|
k = self.in_proj_k(key) |
|
v = self.in_proj_v(key) |
|
|
|
else: |
|
q = self.in_proj_q(query) |
|
k = self.in_proj_k(key) |
|
v = self.in_proj_v(value) |
|
q = q * self.scaling |
|
|
|
if self.bias_k is not None: |
|
assert self.bias_v is not None |
|
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1) |
|
|
|
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if k is not None: |
|
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
if v is not None: |
|
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) |
|
|
|
if saved_state is not None: |
|
|
|
if 'prev_key' in saved_state: |
|
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
k = prev_key |
|
else: |
|
k = torch.cat((prev_key, k), dim=1) |
|
if 'prev_value' in saved_state: |
|
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim) |
|
if static_kv: |
|
v = prev_value |
|
else: |
|
v = torch.cat((prev_value, v), dim=1) |
|
if 'prev_key_padding_mask' in saved_state and saved_state['prev_key_padding_mask'] is not None: |
|
prev_key_padding_mask = saved_state['prev_key_padding_mask'] |
|
if static_kv: |
|
key_padding_mask = prev_key_padding_mask |
|
else: |
|
key_padding_mask = torch.cat((prev_key_padding_mask, key_padding_mask), dim=1) |
|
|
|
saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim) |
|
saved_state['prev_key_padding_mask'] = key_padding_mask |
|
|
|
self._set_input_buffer(incremental_state, saved_state) |
|
|
|
src_len = k.size(1) |
|
|
|
|
|
|
|
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]): |
|
key_padding_mask = None |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.size(0) == bsz |
|
assert key_padding_mask.size(1) == src_len |
|
|
|
if self.add_zero_attn: |
|
src_len += 1 |
|
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) |
|
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1) |
|
if key_padding_mask is not None: |
|
key_padding_mask = torch.cat( |
|
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1) |
|
|
|
attn_weights = torch.bmm(q, k.transpose(1, 2)) |
|
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) |
|
|
|
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] |
|
|
|
if attn_mask is not None: |
|
if len(attn_mask.shape) == 2: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
elif len(attn_mask.shape) == 3: |
|
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape( |
|
bsz * self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights + attn_mask |
|
|
|
if enc_dec_attn_constraint_mask is not None: |
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.masked_fill( |
|
enc_dec_attn_constraint_mask.unsqueeze(2).bool(), |
|
-1e8, |
|
) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
if key_padding_mask is not None: |
|
|
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
attn_weights = attn_weights.masked_fill( |
|
key_padding_mask.unsqueeze(1).unsqueeze(2), |
|
-1e8, |
|
) |
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) |
|
|
|
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) |
|
|
|
if before_softmax: |
|
return attn_weights, v |
|
|
|
attn_weights_float = softmax(attn_weights, dim=-1) |
|
attn_weights = attn_weights_float.type_as(attn_weights) |
|
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) |
|
|
|
if reset_attn_weight is not None: |
|
if reset_attn_weight: |
|
self.last_attn_probs = attn_probs.detach() |
|
else: |
|
assert self.last_attn_probs is not None |
|
attn_probs = self.last_attn_probs |
|
attn = torch.bmm(attn_probs, v) |
|
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] |
|
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) |
|
attn = self.out_proj(attn) |
|
|
|
if need_weights: |
|
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) |
|
if not need_head_weights: |
|
|
|
attn_weights = attn_weights.mean(dim=0) |
|
else: |
|
attn_weights = None |
|
|
|
return attn, (attn_weights, attn_logits) |
|
|
|
def in_proj_qkv(self, query): |
|
return self._in_proj(query).chunk(3, dim=-1) |
|
|
|
def in_proj_q(self, query): |
|
if self.qkv_same_dim: |
|
return self._in_proj(query, end=self.embed_dim) |
|
else: |
|
bias = self.in_proj_bias |
|
if bias is not None: |
|
bias = bias[:self.embed_dim] |
|
return F.linear(query, self.q_proj_weight, bias) |
|
|
|
def in_proj_k(self, key): |
|
if self.qkv_same_dim: |
|
return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) |
|
else: |
|
weight = self.k_proj_weight |
|
bias = self.in_proj_bias |
|
if bias is not None: |
|
bias = bias[self.embed_dim:2 * self.embed_dim] |
|
return F.linear(key, weight, bias) |
|
|
|
def in_proj_v(self, value): |
|
if self.qkv_same_dim: |
|
return self._in_proj(value, start=2 * self.embed_dim) |
|
else: |
|
weight = self.v_proj_weight |
|
bias = self.in_proj_bias |
|
if bias is not None: |
|
bias = bias[2 * self.embed_dim:] |
|
return F.linear(value, weight, bias) |
|
|
|
def _in_proj(self, input, start=0, end=None): |
|
weight = self.in_proj_weight |
|
bias = self.in_proj_bias |
|
weight = weight[start:end, :] |
|
if bias is not None: |
|
bias = bias[start:end] |
|
return F.linear(input, weight, bias) |
|
|
|
def _get_input_buffer(self, incremental_state): |
|
return get_incremental_state( |
|
self, |
|
incremental_state, |
|
'attn_state', |
|
) or {} |
|
|
|
def _set_input_buffer(self, incremental_state, buffer): |
|
set_incremental_state( |
|
self, |
|
incremental_state, |
|
'attn_state', |
|
buffer, |
|
) |
|
|
|
def apply_sparse_mask(self, attn_weights, tgt_len, src_len, bsz): |
|
return attn_weights |
|
|
|
def clear_buffer(self, incremental_state=None): |
|
if incremental_state is not None: |
|
saved_state = self._get_input_buffer(incremental_state) |
|
if 'prev_key' in saved_state: |
|
del saved_state['prev_key'] |
|
if 'prev_value' in saved_state: |
|
del saved_state['prev_value'] |
|
self._set_input_buffer(incremental_state, saved_state) |
|
|
|
|
|
class EncSALayer(nn.Module): |
|
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, |
|
relu_dropout=0.1, kernel_size=9, padding='SAME', act='gelu', |
|
ffn_hidden_size=1024): |
|
super().__init__() |
|
self.c = c |
|
self.dropout = dropout |
|
self.num_heads = num_heads |
|
if num_heads > 0: |
|
self.layer_norm1 = LayerNorm(c) |
|
self.self_attn = MultiheadAttention( |
|
self.c, num_heads, self_attention=True, dropout=attention_dropout, bias=False) |
|
self.layer_norm2 = LayerNorm(c) |
|
self.ffn = TransformerFFNLayer( |
|
c, ffn_hidden_size, kernel_size=kernel_size, dropout=relu_dropout, padding=padding, act=act) |
|
|
|
def forward(self, x, encoder_padding_mask=None, **kwargs): |
|
layer_norm_training = kwargs.get('layer_norm_training', None) |
|
if layer_norm_training is not None: |
|
self.layer_norm1.training = layer_norm_training |
|
self.layer_norm2.training = layer_norm_training |
|
if self.num_heads > 0: |
|
residual = x |
|
x = self.layer_norm1(x) |
|
x, _, = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=encoder_padding_mask |
|
) |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = residual + x |
|
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] |
|
|
|
residual = x |
|
x = self.layer_norm2(x) |
|
x = self.ffn(x) |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = residual + x |
|
x = x * (1 - encoder_padding_mask.float()).transpose(0, 1)[..., None] |
|
return x |
|
|
|
|
|
class DecSALayer(nn.Module): |
|
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, |
|
kernel_size=9, ffn_hidden_size=1024, act='gelu', post_ln=False): |
|
super().__init__() |
|
self.c = c |
|
self.dropout = dropout |
|
self.layer_norm1 = LayerNorm(c) |
|
self.self_attn = MultiheadAttention( |
|
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False |
|
) |
|
self.layer_norm2 = LayerNorm(c) |
|
self.encoder_attn = MultiheadAttention( |
|
c, num_heads, encoder_decoder_attention=True, dropout=attention_dropout, bias=False, |
|
) |
|
self.layer_norm3 = LayerNorm(c) |
|
self.ffn = TransformerFFNLayer( |
|
c, ffn_hidden_size, padding='LEFT', kernel_size=kernel_size, dropout=relu_dropout, act=act) |
|
self.post_ln = post_ln |
|
|
|
def forward( |
|
self, |
|
x, |
|
encoder_out=None, |
|
encoder_padding_mask=None, |
|
incremental_state=None, |
|
self_attn_mask=None, |
|
self_attn_padding_mask=None, |
|
attn_out=None, |
|
reset_attn_weight=None, |
|
**kwargs, |
|
): |
|
layer_norm_training = kwargs.get('layer_norm_training', None) |
|
if layer_norm_training is not None: |
|
self.layer_norm1.training = layer_norm_training |
|
self.layer_norm2.training = layer_norm_training |
|
self.layer_norm3.training = layer_norm_training |
|
residual = x |
|
if not self.post_ln: |
|
x = self.layer_norm1(x) |
|
x, _ = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
key_padding_mask=self_attn_padding_mask, |
|
incremental_state=incremental_state, |
|
attn_mask=self_attn_mask |
|
) |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = residual + x |
|
if self.post_ln: |
|
x = self.layer_norm1(x) |
|
|
|
attn_logits = None |
|
if encoder_out is not None or attn_out is not None: |
|
residual = x |
|
if not self.post_ln: |
|
x = self.layer_norm2(x) |
|
if encoder_out is not None: |
|
x, attn = self.encoder_attn( |
|
query=x, |
|
key=encoder_out, |
|
value=encoder_out, |
|
key_padding_mask=encoder_padding_mask, |
|
incremental_state=incremental_state, |
|
static_kv=True, |
|
enc_dec_attn_constraint_mask=get_incremental_state(self, incremental_state, |
|
'enc_dec_attn_constraint_mask'), |
|
reset_attn_weight=reset_attn_weight |
|
) |
|
attn_logits = attn[1] |
|
elif attn_out is not None: |
|
x = self.encoder_attn.in_proj_v(attn_out) |
|
if encoder_out is not None or attn_out is not None: |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = residual + x |
|
if self.post_ln: |
|
x = self.layer_norm2(x) |
|
|
|
residual = x |
|
if not self.post_ln: |
|
x = self.layer_norm3(x) |
|
x = self.ffn(x, incremental_state=incremental_state) |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = residual + x |
|
if self.post_ln: |
|
x = self.layer_norm3(x) |
|
return x, attn_logits |
|
|
|
def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None): |
|
self.encoder_attn.clear_buffer(incremental_state) |
|
self.ffn.clear_buffer(incremental_state) |
|
|
|
def set_buffer(self, name, tensor, incremental_state): |
|
return set_incremental_state(self, incremental_state, name, tensor) |
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=2, ffn_hidden_size=1024): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.dropout = dropout |
|
self.num_heads = num_heads |
|
self.op = EncSALayer( |
|
hidden_size, num_heads, dropout=dropout, |
|
attention_dropout=0.0, relu_dropout=dropout, |
|
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size) |
|
|
|
def forward(self, x, **kwargs): |
|
return self.op(x, **kwargs) |
|
|
|
|
|
class TransformerDecoderLayer(nn.Module): |
|
def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=2, ffn_hidden_size=1024, post_ln=False): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.dropout = dropout |
|
self.num_heads = num_heads |
|
self.op = DecSALayer( |
|
hidden_size, num_heads, dropout=dropout, |
|
attention_dropout=0.0, relu_dropout=dropout, |
|
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size, |
|
post_ln=post_ln) |
|
|
|
def forward(self, x, **kwargs): |
|
return self.op(x, **kwargs) |
|
|
|
def clear_buffer(self, *args): |
|
return self.op.clear_buffer(*args) |
|
|
|
def set_buffer(self, *args): |
|
return self.op.set_buffer(*args) |
|
|
|
|
|
class FFTBlocks(nn.Module): |
|
def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=0.0, |
|
num_heads=2, use_pos_embed=True, use_last_norm=True, |
|
use_pos_embed_alpha=True, ffn_hidden_size=1024): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
embed_dim = self.hidden_size = hidden_size |
|
self.dropout = dropout |
|
self.use_pos_embed = use_pos_embed |
|
self.use_last_norm = use_last_norm |
|
if use_pos_embed: |
|
self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS |
|
self.padding_idx = 0 |
|
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1 |
|
self.embed_positions = SinusoidalPositionalEmbedding( |
|
embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, |
|
) |
|
|
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend([ |
|
TransformerEncoderLayer(self.hidden_size, self.dropout, |
|
kernel_size=ffn_kernel_size, num_heads=num_heads, |
|
ffn_hidden_size=ffn_hidden_size) |
|
for _ in range(self.num_layers) |
|
]) |
|
if self.use_last_norm: |
|
self.layer_norm = nn.LayerNorm(embed_dim) |
|
else: |
|
self.layer_norm = None |
|
|
|
def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False): |
|
""" |
|
:param x: [B, T, C] |
|
:param padding_mask: [B, T] |
|
:return: [B, T, C] or [L, B, T, C] |
|
""" |
|
padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask |
|
nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] |
|
if self.use_pos_embed: |
|
positions = self.pos_embed_alpha * self.embed_positions(x[..., 0]) |
|
x = x + positions |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
x = x.transpose(0, 1) * nonpadding_mask_TB |
|
hiddens = [] |
|
for layer in self.layers: |
|
x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB |
|
hiddens.append(x) |
|
if self.use_last_norm: |
|
x = self.layer_norm(x) * nonpadding_mask_TB |
|
if return_hiddens: |
|
x = torch.stack(hiddens, 0) |
|
x = x.transpose(1, 2) |
|
else: |
|
x = x.transpose(0, 1) |
|
return x |
|
|
|
|
|
class FastSpeechEncoder(FFTBlocks): |
|
def __init__(self, dict_size, hidden_size=256, num_layers=4, kernel_size=9, |
|
dropout=0.0, num_heads=2, ffn_hidden_size=1024): |
|
super().__init__(hidden_size, num_layers, kernel_size, num_heads=num_heads, |
|
use_pos_embed=False, dropout=dropout, ffn_hidden_size=ffn_hidden_size) |
|
self.embed_tokens = Embedding(dict_size, hidden_size, 0) |
|
self.embed_scale = math.sqrt(hidden_size) |
|
self.padding_idx = 0 |
|
self.embed_positions = SinusoidalPositionalEmbedding( |
|
hidden_size, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, |
|
) |
|
|
|
def forward(self, txt_tokens, attn_mask=None, other_embeds=0): |
|
""" |
|
|
|
:param txt_tokens: [B, T] |
|
:return: { |
|
'encoder_out': [B x T x C] |
|
} |
|
""" |
|
encoder_padding_mask = txt_tokens.eq(self.padding_idx).data |
|
x = self.forward_embedding(txt_tokens) + other_embeds |
|
if self.num_layers > 0: |
|
x = super(FastSpeechEncoder, self).forward(x, encoder_padding_mask, attn_mask=attn_mask) |
|
return x |
|
|
|
def forward_embedding(self, txt_tokens): |
|
|
|
x = self.embed_scale * self.embed_tokens(txt_tokens) |
|
if self.use_pos_embed: |
|
positions = self.embed_positions(txt_tokens) |
|
x = x + positions |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
return x |
|
|