ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
raw
history blame
2.63 kB
"""
Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
Code adapted from Jax version in Appendix A.1
"""
from typing import List
import torch
import torch.nn as nn
from torch import Tensor, int32
def round_ste(z: Tensor) -> Tensor:
"""Round with straight through gradients."""
zhat = z.round()
return z + (zhat - z).detach()
class FSQ(nn.Module):
def __init__(self, levels: List[int]):
super().__init__()
_levels = torch.tensor(levels, dtype=int32)
self.register_buffer("_levels", _levels)
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
self.register_buffer("_basis", _basis)
self.dim = len(levels)
self.n_codes = self._levels.prod().item()
implicit_codebook = self.indices_to_codes(torch.arange(self.n_codes))
self.register_buffer("implicit_codebook", implicit_codebook)
def forward(self, z: Tensor) -> Tensor:
zhat = self.quantize(z)
indices = self.codes_to_indices(zhat)
return zhat, indices
def bound(self, z: Tensor, eps: float = 1e-3) -> Tensor:
"""Bound `z`, an array of shape (..., d)."""
half_l = (self._levels - 1) * (1 - eps) / 2
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
shift = (offset / half_l).tan()
return (z + shift).tanh() * half_l - offset
def quantize(self, z: Tensor) -> Tensor:
"""Quantizes z, returns quantized zhat, same shape as z."""
quantized = round_ste(self.bound(z))
half_width = self._levels // 2 # Renormalize to [-1, 1].
return quantized / half_width
def _scale_and_shift(self, zhat_normalized: Tensor) -> Tensor:
half_width = self._levels // 2
return (zhat_normalized * half_width) + half_width
def _scale_and_shift_inverse(self, zhat: Tensor) -> Tensor:
half_width = self._levels // 2
return (zhat - half_width) / half_width
def codes_to_indices(self, zhat: Tensor) -> Tensor:
"""Converts a `code` to an index in the codebook."""
assert zhat.shape[-1] == self.dim
zhat = self._scale_and_shift(zhat)
return (zhat * self._basis).sum(dim=-1).to(int32)
def indices_to_codes(self, indices: Tensor) -> Tensor:
"""Inverse of `codes_to_indices`."""
indices = indices.unsqueeze(-1)
codes_non_centered = (indices // self._basis) % self._levels
return self._scale_and_shift_inverse(codes_non_centered)
def get_codebook_entry(self, encoding_indices):
return self.indices_to_codes(encoding_indices)