|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from scipy.cluster.vq import kmeans2 |
|
from torch import einsum |
|
from einops import rearrange |
|
import torch.distributed as dist |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
""" |
|
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py |
|
____________________________________________ |
|
Discretization bottleneck part of the VQ-VAE. |
|
Inputs: |
|
- n_e : number of embeddings |
|
- e_dim : dimension of embedding |
|
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 |
|
_____________________________________________ |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, n_e, e_dim, beta): |
|
super(VectorQuantizer, self).__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
def forward(self, z): |
|
""" |
|
Inputs the output of the encoder network z and maps it to a discrete |
|
one-hot vector that is the index of the closest embedding vector e_j |
|
z (continuous) -> z_q (discrete) |
|
z.shape = (batch, channel, height, width) |
|
quantization pipeline: |
|
1. get encoder input (B,C,H,W) |
|
2. flatten input to (B*H*W,C) |
|
""" |
|
|
|
z = z.permute(0, 2, 3, 1).contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ |
|
torch.matmul(z_flattened, self.embedding.weight.t()) |
|
|
|
|
|
|
|
|
|
min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) |
|
|
|
min_encodings = torch.zeros( |
|
min_encoding_indices.shape[0], self.n_e).to(z) |
|
min_encodings.scatter_(1, min_encoding_indices, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
e_mean = torch.mean(min_encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
|
|
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) |
|
min_encodings.scatter_(1, indices[:, None], 1) |
|
|
|
|
|
z_q = torch.matmul(min_encodings.float(), self.embedding.weight) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
class GumbelQuantize(nn.Module): |
|
""" |
|
credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!) |
|
Gumbel Softmax trick quantizer |
|
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016 |
|
https://arxiv.org/abs/1611.01144 |
|
""" |
|
|
|
def __init__(self, num_hiddens, embedding_dim, n_embed, straight_through=True, |
|
kl_weight=5e-4, temp_init=1.0, use_vqinterface=True, |
|
remap=None, unknown_index="random"): |
|
super().__init__() |
|
|
|
self.embedding_dim = embedding_dim |
|
self.n_embed = n_embed |
|
|
|
self.straight_through = straight_through |
|
self.temperature = temp_init |
|
self.kl_weight = kl_weight |
|
|
|
self.proj = nn.Conv2d(num_hiddens, n_embed, 1) |
|
self.embed = nn.Embedding(n_embed, embedding_dim) |
|
|
|
self.use_vqinterface = use_vqinterface |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print(f"Remapping {self.n_embed} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_embed |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z, temp=None, return_logits=False): |
|
|
|
hard = self.straight_through if self.training else True |
|
temp = self.temperature if temp is None else temp |
|
|
|
logits = self.proj(z) |
|
if self.remap is not None: |
|
|
|
full_zeros = torch.zeros_like(logits) |
|
logits = logits[:, self.used, ...] |
|
|
|
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard) |
|
if self.remap is not None: |
|
|
|
full_zeros[:, self.used, ...] = soft_one_hot |
|
soft_one_hot = full_zeros |
|
z_q = einsum('b n h w, n d -> b d h w', soft_one_hot, self.embed.weight) |
|
|
|
|
|
qy = F.softmax(logits, dim=1) |
|
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean() |
|
|
|
ind = soft_one_hot.argmax(dim=1) |
|
if self.remap is not None: |
|
ind = self.remap_to_used(ind) |
|
if self.use_vqinterface: |
|
if return_logits: |
|
return z_q, diff, (None, None, ind), logits |
|
return z_q, diff, (None, None, ind) |
|
return z_q, diff, ind |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
b, h, w, c = shape |
|
assert b * h * w == indices.shape[0] |
|
indices = rearrange(indices, '(b h w) -> b h w', b=b, h=h, w=w) |
|
if self.remap is not None: |
|
indices = self.unmap_to_all(indices) |
|
one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float() |
|
z_q = einsum('b n h w, n d -> b d h w', one_hot, self.embed.weight) |
|
return z_q |
|
|
|
|
|
class VectorQuantizer2(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly |
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__(self, n_e, e_dim, beta, legacy=False): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.re_embed = n_e |
|
|
|
def encode(self, z): |
|
B, T, _ = z.shape |
|
z_flattened = z.reshape(-1, self.e_dim) |
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).reshape(z.shape) |
|
|
|
z_q = z_q.view_as(z) |
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[:-1]) |
|
return z_flattened, z_q, min_encoding_indices |
|
|
|
def forward(self, z, mask=None, temp=None, rescale_logits=False, return_logits=False): |
|
if mask is not None: |
|
assert mask.shape[:2] == z.shape[:2], (mask.shape, z.shape) |
|
assert mask.shape[-1] == 1, (mask.shape,) |
|
z = z * mask |
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits == False, "Only for interface compatible with Gumbel" |
|
assert return_logits == False, "Only for interface compatible with Gumbel" |
|
|
|
|
|
assert z.shape[-1] == self.e_dim |
|
z_flattened = z.reshape(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ |
|
torch.matmul(z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
|
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).reshape(z.shape) |
|
perplexity = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * (z_q.detach() - z) ** 2 + \ |
|
(z_q - z.detach()) ** 2 |
|
else: |
|
loss = (z_q.detach() - z) ** 2 + self.beta * \ |
|
(z_q - z.detach()) ** 2 |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[:-1]) |
|
if mask is not None: |
|
loss = (loss * mask).sum() / mask.sum() / self.e_dim |
|
else: |
|
loss = loss.mean() |
|
return z_q, loss, min_encoding_indices, perplexity |
|
|
|
def get_codebook_entry(self, indices, shape=None): |
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
class VectorQuantizer4(nn.Module): |
|
def __init__(self, n_e, e_dim, beta, legacy=False, kmeans_reset_every=1000): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.re_embed = n_e |
|
self.reset_every = kmeans_reset_every |
|
self.reset_thres = 20 |
|
self.z_buffer = [] |
|
self.register_buffer('use_flag', torch.zeros(n_e)) |
|
self.register_buffer('steps', torch.zeros(1)) |
|
|
|
def encode(self, z): |
|
B, T, _ = z.shape |
|
z_flattened = z.reshape(-1, self.e_dim) |
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).reshape(z.shape) |
|
|
|
z_q = z_q.view_as(z) |
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[:-1]) |
|
return z_flattened, z_q, min_encoding_indices |
|
|
|
def forward(self, z, mask=None, temp=None, rescale_logits=False, return_logits=False): |
|
if mask is not None: |
|
assert mask.shape[:2] == z.shape[:2], (mask.shape, z.shape) |
|
assert mask.shape[-1] == 1, (mask.shape,) |
|
z = z * mask |
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits == False, "Only for interface compatible with Gumbel" |
|
assert return_logits == False, "Only for interface compatible with Gumbel" |
|
|
|
|
|
assert z.shape[-1] == self.e_dim |
|
z_flattened = z.reshape(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).reshape(z.shape) |
|
perplexity = None |
|
|
|
if self.training: |
|
self.steps += 1 |
|
self.use_flag += torch.bincount(min_encoding_indices, minlength=self.n_e) |
|
is_master = not dist.is_initialized() or dist.get_rank() == 0 |
|
if self.reset_every - 100 <= self.steps <= self.reset_every: |
|
if dist.is_initialized(): |
|
z_buffer_ = [None for _ in range(dist.get_world_size())] |
|
dist.all_gather_object(z_buffer_, z_flattened.detach().cpu()) |
|
else: |
|
z_buffer_ = [z_flattened.detach().cpu()] |
|
self.z_buffer += z_buffer_ |
|
|
|
if self.steps % self.reset_every == 0: |
|
if dist.is_initialized(): |
|
dist.all_reduce(self.use_flag) |
|
vq_usage = (self.use_flag > self.reset_thres).sum().item() / self.use_flag.shape[0] |
|
print("| VQ usage: ", vq_usage) |
|
if vq_usage != 1: |
|
if is_master: |
|
if self.steps.item() == self.reset_every: |
|
print('| running kmeans in VQVAE') |
|
z_buffer = torch.cat(self.z_buffer, 0) |
|
rp = torch.randperm(z_buffer.shape[0]) |
|
kd = kmeans2(z_buffer[rp].numpy(), self.n_e, minit='points')[0] |
|
self.embedding.weight.data = torch.from_numpy(kd).to(z.device) |
|
else: |
|
reset_ids = self.use_flag < self.reset_thres |
|
keep_ids = self.use_flag >= self.reset_thres |
|
t = torch.randint(0, keep_ids.sum(), [reset_ids.sum()], device=self.use_flag.device) |
|
keep_ids = torch.where(keep_ids)[0][t] |
|
self.embedding.weight.data[reset_ids] = self.embedding.weight.data[keep_ids].clone() |
|
if dist.is_initialized(): |
|
dist.broadcast(self.embedding.weight.data, 0) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).reshape(z.shape) |
|
self.use_flag.fill_(0) |
|
self.z_buffer = [] |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * (z_q.detach() - z) ** 2 + \ |
|
(z_q - z.detach()) ** 2 |
|
else: |
|
loss = (z_q.detach() - z) ** 2 + self.beta * \ |
|
(z_q - z.detach()) ** 2 |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[:-1]) |
|
if mask is not None: |
|
loss = (loss * mask).sum() / mask.sum() / self.e_dim |
|
else: |
|
loss = loss.mean() |
|
return z_q, loss, min_encoding_indices, perplexity |
|
|
|
def get_codebook_entry(self, indices, shape=None): |
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|