|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from modules.eg3ds.models.networks_stylegan2 import Generator as StyleGAN2Backbone |
|
from modules.eg3ds.models.networks_stylegan2 import FullyConnectedLayer |
|
from modules.eg3ds.volumetric_rendering.renderer import ImportanceRenderer |
|
from modules.eg3ds.volumetric_rendering.ray_sampler import RaySampler |
|
from modules.eg3ds.models.superresolution import SuperresolutionHybrid2X, SuperresolutionHybrid4X, SuperresolutionHybrid8X, SuperresolutionHybrid8XDC |
|
|
|
import copy |
|
from utils.commons.hparams import hparams |
|
|
|
|
|
class TriPlaneGenerator(torch.nn.Module): |
|
def __init__(self, hp=None): |
|
super().__init__() |
|
global hparams |
|
self.hparams = copy.copy(hparams) if hp is None else copy.copy(hp) |
|
hparams = self.hparams |
|
|
|
self.z_dim = hparams['z_dim'] |
|
self.camera_dim = 25 |
|
self.w_dim=hparams['w_dim'] |
|
|
|
self.img_resolution = hparams['final_resolution'] |
|
self.img_channels = 3 |
|
self.renderer = ImportanceRenderer(hp=hparams) |
|
self.renderer.triplane_feature_type = 'triplane' |
|
self.ray_sampler = RaySampler() |
|
|
|
self.neural_rendering_resolution = hparams['neural_rendering_resolution'] |
|
|
|
mapping_kwargs = {'num_layers': hparams['mapping_network_depth']} |
|
synthesis_kwargs = {'channel_base': hparams['base_channel'], 'channel_max': hparams['max_channel'], 'fused_modconv_default': 'inference_only', 'num_fp16_res': hparams['num_fp16_layers_in_generator'], 'conv_clamp': None} |
|
|
|
triplane_c_dim = self.camera_dim |
|
|
|
|
|
self.backbone = StyleGAN2Backbone(self.z_dim, triplane_c_dim, self.w_dim, img_resolution=256, img_channels=32*3, mapping_kwargs=mapping_kwargs, **synthesis_kwargs) |
|
self.decoder = OSGDecoder(32, {'decoder_lr_mul': 1, 'decoder_output_dim': 32}) |
|
|
|
self.rendering_kwargs = {'image_resolution': hparams['final_resolution'], |
|
'disparity_space_sampling': False, |
|
'clamp_mode': 'softplus', |
|
'gpc_reg_prob': hparams['gpc_reg_prob'], |
|
'c_scale': 1.0, |
|
'superresolution_noise_mode': 'none', |
|
'density_reg': hparams['lambda_density_reg'], 'density_reg_p_dist': hparams['density_reg_p_dist'], |
|
'reg_type': 'l1', 'decoder_lr_mul': 1.0, |
|
'sr_antialias': True, |
|
'depth_resolution': hparams['num_samples_coarse'], |
|
'depth_resolution_importance': hparams['num_samples_fine'], |
|
'ray_start': hparams['ray_near'], 'ray_end': hparams['ray_far'], |
|
'box_warp': hparams['box_warp'], |
|
'avg_camera_radius': 2.7, |
|
'avg_camera_pivot': [0, 0, 0.2], |
|
'white_back': False, |
|
} |
|
|
|
sr_num_fp16_res = hparams['num_fp16_layers_in_super_resolution'] |
|
sr_kwargs = {'channel_base': hparams['base_channel'], 'channel_max': hparams['max_channel'], 'fused_modconv_default': 'inference_only'} |
|
self.superresolution = SuperresolutionHybrid8XDC(channels=32, img_resolution=self.img_resolution, sr_num_fp16_res=sr_num_fp16_res, sr_antialias=True, **sr_kwargs) |
|
|
|
def mapping(self, z, camera, cond=None, truncation_psi=0.7, truncation_cutoff=None, update_emas=False): |
|
""" |
|
Generate weights by forward the Mapping network. |
|
|
|
z: latent sampled from N(0,1): [B, z_dim=512] |
|
camera: falttened extrinsic 4x4 matrix and intrinsic 3x3 matrix [B, c=16+9] |
|
cond: auxiliary condition, such as idexp_lm3d: [B, c=68*3] |
|
truncation_psi: the threshold of truncation trick in BigGAN, 1.0 means no effect, 0.0 means the ws is the mean_ws, and 0~1 value means linear interpolation in these two. |
|
truncation_cutoff: number of ws to adopt truncation. default None means adopt to all ws. other int mean the first number of layers to adopt this trick. |
|
""" |
|
c = camera |
|
ws = self.backbone.mapping(z, c * self.rendering_kwargs.get('c_scale', 0), truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) |
|
if hparams.get("gen_cond_mode", 'none') == 'mapping': |
|
d_ws = self.backbone.cond_mapping(cond, None, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) |
|
ws = ws * 0.5 + d_ws * 0.5 |
|
return ws |
|
|
|
def synthesis(self, ws, camera, cond=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs): |
|
""" |
|
Run the Backbone to synthesize images given the ws generated by self.mapping |
|
""" |
|
ret = {} |
|
|
|
cam2world_matrix = camera[:, :16].view(-1, 4, 4) |
|
intrinsics = camera[:, 16:25].view(-1, 3, 3) |
|
|
|
neural_rendering_resolution = self.neural_rendering_resolution |
|
|
|
|
|
ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution) |
|
|
|
|
|
N, M, _ = ray_origins.shape |
|
if use_cached_backbone and self._last_planes is not None: |
|
planes = self._last_planes |
|
else: |
|
planes = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs) |
|
if cache_backbone: |
|
self._last_planes = planes |
|
|
|
|
|
planes = planes.view(len(planes), 3, -1, planes.shape[-2], planes.shape[-1]) |
|
|
|
|
|
feature_samples, depth_samples, weights_samples, is_ray_valid = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) |
|
|
|
|
|
H = W = self.neural_rendering_resolution |
|
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous() |
|
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W) |
|
if hparams.get("mask_invalid_rays", False): |
|
is_ray_valid_mask = is_ray_valid.reshape([feature_samples.shape[0], 1,self.neural_rendering_resolution,self.neural_rendering_resolution]) |
|
feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] = -1 |
|
depth_image[~is_ray_valid_mask] = depth_image[is_ray_valid_mask].min().item() |
|
|
|
|
|
rgb_image = feature_image[:, :3] |
|
ws_to_sr = ws |
|
if hparams['ones_ws_for_sr']: |
|
ws_to_sr = torch.ones_like(ws) |
|
sr_image = self.superresolution(rgb_image, feature_image, ws_to_sr, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'}) |
|
|
|
rgb_image = rgb_image.clamp(-1,1) |
|
sr_image = sr_image.clamp(-1,1) |
|
ret.update({'image': sr_image, 'image_raw': rgb_image, 'image_depth': depth_image, 'image_feature': feature_image[:, 3:], 'plane': planes}) |
|
return ret |
|
|
|
def sample(self, coordinates, directions, z, camera, cond=None, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs): |
|
""" |
|
Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes. |
|
Not aggregated into pixels, but in the world coordinate. |
|
""" |
|
ws = self.mapping(z, camera, cond=cond, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) |
|
planes = self.backbone.synthesis(ws, update_emas=update_emas, **synthesis_kwargs) |
|
planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) |
|
return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs) |
|
|
|
def sample_mixed(self, coordinates, directions, ws, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs): |
|
""" |
|
Same as sample, but expects latent vectors 'ws' instead of Gaussian noise 'z' |
|
""" |
|
planes = self.backbone.synthesis(ws, update_emas = update_emas, **synthesis_kwargs) |
|
planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) |
|
return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs) |
|
|
|
def forward(self, z, camera, cond=None, truncation_psi=1, truncation_cutoff=None, neural_rendering_resolution=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs): |
|
""" |
|
Render a batch of generated images. |
|
""" |
|
ws = self.mapping(z, camera, cond=cond, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas) |
|
return self.synthesis(ws, camera, cond=cond, update_emas=update_emas, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs) |
|
|
|
|
|
class OSGDecoder(torch.nn.Module): |
|
def __init__(self, n_features, options): |
|
super().__init__() |
|
self.hidden_dim = 64 |
|
|
|
self.net = torch.nn.Sequential( |
|
FullyConnectedLayer(n_features, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']), |
|
torch.nn.Softplus(), |
|
FullyConnectedLayer(self.hidden_dim, 1 + options['decoder_output_dim'], lr_multiplier=options['decoder_lr_mul']) |
|
) |
|
|
|
def forward(self, sampled_features, ray_directions): |
|
|
|
sampled_features = sampled_features.mean(1) |
|
x = sampled_features |
|
|
|
N, M, C = x.shape |
|
x = x.view(N*M, C) |
|
|
|
x = self.net(x) |
|
x = x.view(N, M, -1) |
|
rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 |
|
sigma = x[..., 0:1] |
|
return {'rgb': rgb, 'sigma': sigma} |
|
|