|
import os |
|
import numpy as np |
|
from scipy.misc import face |
|
import torch |
|
from tqdm import trange |
|
import pickle |
|
from copy import deepcopy |
|
|
|
from data_util.face3d_helper import Face3DHelper |
|
from utils.commons.indexed_datasets import IndexedDataset, IndexedDatasetBuilder |
|
|
|
|
|
def load_video_npy(fn): |
|
assert fn.endswith("_coeff_fit_mp.npy") |
|
ret_dict = np.load(fn,allow_pickle=True).item() |
|
video_dict = { |
|
'euler': ret_dict['euler'], |
|
'trans': ret_dict['trans'], |
|
'id': ret_dict['id'], |
|
'exp': ret_dict['exp'], |
|
} |
|
return video_dict |
|
|
|
def cal_lm3d_in_video_dict(video_dict, face3d_helper): |
|
identity = video_dict['id'] |
|
exp = video_dict['exp'] |
|
idexp_lm3d = face3d_helper.reconstruct_idexp_lm3d(identity, exp).cpu().numpy() |
|
video_dict['idexp_lm3d'] = idexp_lm3d |
|
|
|
|
|
def load_audio_npy(fn): |
|
assert fn.endswith(".npy") |
|
ret_dict = np.load(fn,allow_pickle=True).item() |
|
audio_dict = { |
|
"mel": ret_dict['mel'], |
|
"f0": ret_dict['f0'], |
|
} |
|
return audio_dict |
|
|
|
|
|
if __name__ == '__main__': |
|
face3d_helper = Face3DHelper(use_gpu=False) |
|
|
|
import glob,tqdm |
|
prefixs = ['val', 'train'] |
|
binarized_ds_path = "data/binary/th1kh" |
|
os.makedirs(binarized_ds_path, exist_ok=True) |
|
for prefix in prefixs: |
|
databuilder = IndexedDatasetBuilder(os.path.join(binarized_ds_path, prefix), gzip=False, default_idx_size=1024*1024*1024*2) |
|
raw_base_dir = '/mnt/bn/ailabrenyi/entries/yezhenhui/datasets/raw/TH1KH_512/video' |
|
mp4_names = glob.glob(os.path.join(raw_base_dir, '*.mp4')) |
|
mp4_names = mp4_names[:1000] |
|
cnt = 0 |
|
scnt = 0 |
|
pbar = tqdm.tqdm(enumerate(mp4_names), total=len(mp4_names)) |
|
for i, mp4_name in pbar: |
|
cnt += 1 |
|
if prefix == 'train': |
|
if i % 100 == 0: |
|
continue |
|
else: |
|
if i % 100 != 0: |
|
continue |
|
hubert_npy_name = mp4_name.replace("/video/", "/hubert/").replace(".mp4", "_hubert.npy") |
|
audio_npy_name = mp4_name.replace("/video/", "/mel_f0/").replace(".mp4", "_mel_f0.npy") |
|
video_npy_name = mp4_name.replace("/video/", "/coeff_fit_mp/").replace(".mp4", "_coeff_fit_mp.npy") |
|
if not os.path.exists(audio_npy_name): |
|
print(f"Skip item for audio npy not found.") |
|
continue |
|
if not os.path.exists(video_npy_name): |
|
print(f"Skip item for video npy not found.") |
|
continue |
|
if (not os.path.exists(hubert_npy_name)): |
|
print(f"Skip item for hubert_npy not found.") |
|
continue |
|
audio_dict = load_audio_npy(audio_npy_name) |
|
hubert = np.load(hubert_npy_name) |
|
video_dict = load_video_npy(video_npy_name) |
|
com_img_dir = mp4_name.replace("/video/", "/com_imgs/").replace(".mp4", "") |
|
num_com_imgs = len(glob.glob(os.path.join(com_img_dir, '*'))) |
|
num_frames = len(video_dict['exp']) |
|
if num_com_imgs != num_frames: |
|
print(f"Skip item for length mismatch.") |
|
continue |
|
mel = audio_dict['mel'] |
|
if mel.shape[0] < 32: |
|
print(f"Skip item for too short.") |
|
continue |
|
|
|
audio_dict.update(video_dict) |
|
audio_dict['item_id'] = os.path.basename(mp4_name)[:-4] |
|
audio_dict['hubert'] = hubert |
|
audio_dict['img_dir'] = com_img_dir |
|
|
|
|
|
databuilder.add_item(audio_dict) |
|
scnt += 1 |
|
pbar.set_postfix({'success': scnt, 'success rate': scnt / cnt}) |
|
databuilder.finalize() |
|
print(f"{prefix} set has {cnt} samples!") |