|
import numpy as np |
|
from data_util.face3d_helper import Face3DHelper |
|
from utils.commons.tensor_utils import convert_to_tensor |
|
|
|
def polygon_area(x, y): |
|
""" |
|
x: [T, K=6] |
|
y: [T, K=6] |
|
return: [T,] |
|
""" |
|
x_ = x - x.mean(axis=-1, keepdims=True) |
|
y_ = y - y.mean(axis=-1, keepdims=True) |
|
correction = x_[:,-1] * y_[:,0] - y_[:,-1]* x_[:,0] |
|
main_area = (x_[:,:-1] * y_[:,1:]).sum(axis=-1) - (y_[:,:-1] * x_[:,1:]).sum(axis=-1) |
|
return 0.5 * np.abs(main_area + correction) |
|
|
|
def get_eye_area_percent(id, exp, face3d_helper): |
|
id = convert_to_tensor(id) |
|
exp = convert_to_tensor(exp) |
|
cano_lm3d = face3d_helper.reconstruct_cano_lm3d(id, exp) |
|
cano_lm2d = (cano_lm3d[..., :2] + 1) / 2 |
|
lms = cano_lm2d.cpu().numpy() |
|
eyes_left = slice(36, 42) |
|
eyes_right = slice(42, 48) |
|
area_left = polygon_area(lms[:, eyes_left, 0], lms[:, eyes_left, 1]) |
|
area_right = polygon_area(lms[:, eyes_right, 0], lms[:, eyes_right, 1]) |
|
|
|
area_percent = (area_left + area_right) / 1 * 100 |
|
return area_percent |
|
|
|
|
|
if __name__ == '__main__': |
|
import numpy as np |
|
import imageio |
|
import cv2 |
|
import torch |
|
from data_gen.utils.process_video.extract_lm2d import extract_lms_mediapipe_job, read_video_to_frames, index_lm68_from_lm468 |
|
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video |
|
from data_util.face3d_helper import Face3DHelper |
|
|
|
face3d_helper = Face3DHelper() |
|
video_name = 'data/raw/videos/May_10s.mp4' |
|
frames = read_video_to_frames(video_name) |
|
coeff = fit_3dmm_for_a_video(video_name, save=False) |
|
area_percent = get_eye_area_percent(torch.tensor(coeff['id']), torch.tensor(coeff['exp']), face3d_helper) |
|
writer = imageio.get_writer("1.mp4", fps=25) |
|
for idx, frame in enumerate(frames): |
|
frame = cv2.putText(frame, f"{area_percent[idx]:.2f}", org=(128,128), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=1, color=(255,0,0), thickness=1) |
|
writer.append_data(frame) |
|
writer.close() |