|
import os |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from scipy.io import loadmat |
|
|
|
from deep_3drecon.deep_3drecon_models.bfm import perspective_projection |
|
|
|
|
|
class Face3DHelper(nn.Module): |
|
def __init__(self, bfm_dir='deep_3drecon/BFM', keypoint_mode='lm68', use_gpu=True): |
|
super().__init__() |
|
self.keypoint_mode = keypoint_mode |
|
self.bfm_dir = bfm_dir |
|
self.load_3dmm() |
|
if use_gpu: self.to("cuda") |
|
|
|
def load_3dmm(self): |
|
model = loadmat(os.path.join(self.bfm_dir, "BFM_model_front.mat")) |
|
self.register_buffer('mean_shape',torch.from_numpy(model['meanshape'].transpose()).float()) |
|
mean_shape = self.mean_shape.reshape([-1, 3]) |
|
|
|
mean_shape = mean_shape - torch.mean(mean_shape, dim=0, keepdims=True) |
|
self.mean_shape = mean_shape.reshape([-1, 1]) |
|
self.register_buffer('id_base',torch.from_numpy(model['idBase']).float()) |
|
self.register_buffer('exp_base',torch.from_numpy(model['exBase']).float()) |
|
|
|
self.register_buffer('mean_texure',torch.from_numpy(model['meantex'].transpose()).float()) |
|
self.register_buffer('tex_base',torch.from_numpy(model['texBase']).float()) |
|
|
|
self.register_buffer('point_buf',torch.from_numpy(model['point_buf']).float()) |
|
self.register_buffer('face_buf',torch.from_numpy(model['tri']).float()) |
|
if self.keypoint_mode == 'mediapipe': |
|
self.register_buffer('key_points', torch.from_numpy(np.load("deep_3drecon/BFM/index_mp468_from_mesh35709.npy").astype(np.int64))) |
|
unmatch_mask = self.key_points < 0 |
|
self.key_points[unmatch_mask] = 0 |
|
else: |
|
self.register_buffer('key_points',torch.from_numpy(model['keypoints'].squeeze().astype(np.int_)).long()) |
|
|
|
|
|
self.register_buffer('key_mean_shape',self.mean_shape.reshape([-1,3])[self.key_points,:]) |
|
self.register_buffer('key_id_base', self.id_base.reshape([-1,3,80])[self.key_points, :, :].reshape([-1,80])) |
|
self.register_buffer('key_exp_base', self.exp_base.reshape([-1,3,64])[self.key_points, :, :].reshape([-1,64])) |
|
self.key_id_base_np = self.key_id_base.cpu().numpy() |
|
self.key_exp_base_np = self.key_exp_base.cpu().numpy() |
|
|
|
self.register_buffer('persc_proj', torch.tensor(perspective_projection(focal=1015, center=112))) |
|
def split_coeff(self, coeff): |
|
""" |
|
coeff: Tensor[B, T, c=257] or [T, c=257] |
|
""" |
|
ret_dict = { |
|
'identity': coeff[..., :80], |
|
'expression': coeff[..., 80:144], |
|
'texture': coeff[..., 144:224], |
|
'euler': coeff[..., 224:227], |
|
'translation': coeff[..., 254:257], |
|
'gamma': coeff[..., 227:254] |
|
} |
|
return ret_dict |
|
|
|
def reconstruct_face_mesh(self, id_coeff, exp_coeff): |
|
""" |
|
Generate a pose-independent 3D face mesh! |
|
id_coeff: Tensor[T, c=80] |
|
exp_coeff: Tensor[T, c=64] |
|
""" |
|
id_coeff = id_coeff.to(self.key_id_base.device) |
|
exp_coeff = exp_coeff.to(self.key_id_base.device) |
|
mean_face = self.mean_shape.squeeze().reshape([1, -1]) |
|
id_base, exp_base = self.id_base, self.exp_base |
|
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) |
|
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) |
|
|
|
face = mean_face + identity_diff_face + expression_diff_face |
|
face = face.reshape([face.shape[0], -1, 3]) |
|
|
|
|
|
|
|
return face |
|
|
|
def reconstruct_cano_lm3d(self, id_coeff, exp_coeff): |
|
""" |
|
Generate 3D landmark with keypoint base! |
|
id_coeff: Tensor[T, c=80] |
|
exp_coeff: Tensor[T, c=64] |
|
""" |
|
id_coeff = id_coeff.to(self.key_id_base.device) |
|
exp_coeff = exp_coeff.to(self.key_id_base.device) |
|
mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) |
|
id_base, exp_base = self.key_id_base, self.key_exp_base |
|
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) |
|
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) |
|
|
|
face = mean_face + identity_diff_face + expression_diff_face |
|
face = face.reshape([face.shape[0], -1, 3]) |
|
|
|
|
|
|
|
return face |
|
|
|
def reconstruct_lm3d(self, id_coeff, exp_coeff, euler, trans, to_camera=True): |
|
""" |
|
Generate 3D landmark with keypoint base! |
|
id_coeff: Tensor[T, c=80] |
|
exp_coeff: Tensor[T, c=64] |
|
""" |
|
id_coeff = id_coeff.to(self.key_id_base.device) |
|
exp_coeff = exp_coeff.to(self.key_id_base.device) |
|
mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) |
|
id_base, exp_base = self.key_id_base, self.key_exp_base |
|
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) |
|
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) |
|
|
|
face = mean_face + identity_diff_face + expression_diff_face |
|
face = face.reshape([face.shape[0], -1, 3]) |
|
|
|
rot = self.compute_rotation(euler) |
|
|
|
lm3d = face @ rot + trans.unsqueeze(1) |
|
|
|
if to_camera: |
|
lm3d[...,-1] = 10 - lm3d[...,-1] |
|
return lm3d |
|
|
|
def reconstruct_lm2d_nerf(self, id_coeff, exp_coeff, euler, trans): |
|
lm2d = self.reconstruct_lm2d(id_coeff, exp_coeff, euler, trans, to_camera=False) |
|
lm2d[..., 0] = 1 - lm2d[..., 0] |
|
lm2d[..., 1] = 1 - lm2d[..., 1] |
|
return lm2d |
|
|
|
def reconstruct_lm2d(self, id_coeff, exp_coeff, euler, trans, to_camera=True): |
|
""" |
|
Generate 3D landmark with keypoint base! |
|
id_coeff: Tensor[T, c=80] |
|
exp_coeff: Tensor[T, c=64] |
|
""" |
|
is_btc_flag = True if id_coeff.ndim == 3 else False |
|
if is_btc_flag: |
|
b,t,_ = id_coeff.shape |
|
id_coeff = id_coeff.reshape([b*t,-1]) |
|
exp_coeff = exp_coeff.reshape([b*t,-1]) |
|
euler = euler.reshape([b*t,-1]) |
|
trans = trans.reshape([b*t,-1]) |
|
id_coeff = id_coeff.to(self.key_id_base.device) |
|
exp_coeff = exp_coeff.to(self.key_id_base.device) |
|
mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) |
|
id_base, exp_base = self.key_id_base, self.key_exp_base |
|
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) |
|
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) |
|
|
|
face = mean_face + identity_diff_face + expression_diff_face |
|
face = face.reshape([face.shape[0], -1, 3]) |
|
|
|
rot = self.compute_rotation(euler) |
|
|
|
lm3d = face @ rot + trans.unsqueeze(1) |
|
|
|
if to_camera: |
|
lm3d[...,-1] = 10 - lm3d[...,-1] |
|
|
|
lm3d = lm3d @ self.persc_proj |
|
lm2d = lm3d[..., :2] / lm3d[..., 2:] |
|
|
|
lm2d[..., 1] = 224 - lm2d[..., 1] |
|
lm2d /= 224 |
|
if is_btc_flag: |
|
return lm2d.reshape([b,t,-1,2]) |
|
return lm2d |
|
|
|
def compute_rotation(self, euler): |
|
""" |
|
Return: |
|
rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat |
|
|
|
Parameters: |
|
euler -- torch.tensor, size (B, 3), radian |
|
""" |
|
|
|
batch_size = euler.shape[0] |
|
euler = euler.to(self.key_id_base.device) |
|
ones = torch.ones([batch_size, 1]).to(self.key_id_base.device) |
|
zeros = torch.zeros([batch_size, 1]).to(self.key_id_base.device) |
|
x, y, z = euler[:, :1], euler[:, 1:2], euler[:, 2:], |
|
|
|
rot_x = torch.cat([ |
|
ones, zeros, zeros, |
|
zeros, torch.cos(x), -torch.sin(x), |
|
zeros, torch.sin(x), torch.cos(x) |
|
], dim=1).reshape([batch_size, 3, 3]) |
|
|
|
rot_y = torch.cat([ |
|
torch.cos(y), zeros, torch.sin(y), |
|
zeros, ones, zeros, |
|
-torch.sin(y), zeros, torch.cos(y) |
|
], dim=1).reshape([batch_size, 3, 3]) |
|
|
|
rot_z = torch.cat([ |
|
torch.cos(z), -torch.sin(z), zeros, |
|
torch.sin(z), torch.cos(z), zeros, |
|
zeros, zeros, ones |
|
], dim=1).reshape([batch_size, 3, 3]) |
|
|
|
rot = rot_z @ rot_y @ rot_x |
|
return rot.permute(0, 2, 1) |
|
|
|
def reconstruct_idexp_lm3d(self, id_coeff, exp_coeff): |
|
""" |
|
Generate 3D landmark with keypoint base! |
|
id_coeff: Tensor[T, c=80] |
|
exp_coeff: Tensor[T, c=64] |
|
""" |
|
id_coeff = id_coeff.to(self.key_id_base.device) |
|
exp_coeff = exp_coeff.to(self.key_id_base.device) |
|
id_base, exp_base = self.key_id_base, self.key_exp_base |
|
identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) |
|
expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) |
|
|
|
face = identity_diff_face + expression_diff_face |
|
face = face.reshape([face.shape[0], -1, 3]) |
|
lm3d = face * 10 |
|
return lm3d |
|
|
|
def reconstruct_idexp_lm3d_np(self, id_coeff, exp_coeff): |
|
""" |
|
Generate 3D landmark with keypoint base! |
|
id_coeff: Tensor[T, c=80] |
|
exp_coeff: Tensor[T, c=64] |
|
""" |
|
id_base, exp_base = self.key_id_base_np, self.key_exp_base_np |
|
identity_diff_face = np.dot(id_coeff, id_base.T) |
|
expression_diff_face = np.dot(exp_coeff, exp_base.T) |
|
|
|
face = identity_diff_face + expression_diff_face |
|
face = face.reshape([face.shape[0], -1, 3]) |
|
lm3d = face * 10 |
|
return lm3d |
|
|
|
def get_eye_mouth_lm_from_lm3d(self, lm3d): |
|
eye_lm = lm3d[:, 17:48] |
|
mouth_lm = lm3d[:, 48:68] |
|
return eye_lm, mouth_lm |
|
|
|
def get_eye_mouth_lm_from_lm3d_batch(self, lm3d): |
|
eye_lm = lm3d[:, :, 17:48] |
|
mouth_lm = lm3d[:, :, 48:68] |
|
return eye_lm, mouth_lm |
|
|
|
def close_mouth_for_idexp_lm3d(self, idexp_lm3d, freeze_as_first_frame=True): |
|
idexp_lm3d = idexp_lm3d.reshape([-1, 68,3]) |
|
num_frames = idexp_lm3d.shape[0] |
|
eps = 0.0 |
|
|
|
idexp_lm3d[:,49:54, 1] = (idexp_lm3d[:,49:54, 1] + idexp_lm3d[:,range(59,54,-1), 1])/2 + eps * 2 |
|
idexp_lm3d[:,range(59,54,-1), 1] = (idexp_lm3d[:,49:54, 1] + idexp_lm3d[:,range(59,54,-1), 1])/2 - eps * 2 |
|
|
|
idexp_lm3d[:,61:64, 1] = (idexp_lm3d[:,61:64, 1] + idexp_lm3d[:,range(67,64,-1), 1])/2 + eps |
|
idexp_lm3d[:,range(67,64,-1), 1] = (idexp_lm3d[:,61:64, 1] + idexp_lm3d[:,range(67,64,-1), 1])/2 - eps |
|
|
|
idexp_lm3d[:,49:54, 1] += (0.03 - idexp_lm3d[:,49:54, 1].mean(dim=1) + idexp_lm3d[:,61:64, 1].mean(dim=1)).unsqueeze(1).repeat([1,5]) |
|
idexp_lm3d[:,range(59,54,-1), 1] += (-0.03 - idexp_lm3d[:,range(59,54,-1), 1].mean(dim=1) + idexp_lm3d[:,range(67,64,-1), 1].mean(dim=1)).unsqueeze(1).repeat([1,5]) |
|
|
|
if freeze_as_first_frame: |
|
idexp_lm3d[:, 48:68,] = idexp_lm3d[0, 48:68].unsqueeze(0).clone().repeat([num_frames, 1,1])*0 |
|
return idexp_lm3d.cpu() |
|
|
|
def close_eyes_for_idexp_lm3d(self, idexp_lm3d): |
|
idexp_lm3d = idexp_lm3d.reshape([-1, 68,3]) |
|
eps = 0.003 |
|
idexp_lm3d[:,37:39, 1] = (idexp_lm3d[:,37:39, 1] + idexp_lm3d[:,range(41,39,-1), 1])/2 + eps |
|
idexp_lm3d[:,range(41,39,-1), 1] = (idexp_lm3d[:,37:39, 1] + idexp_lm3d[:,range(41,39,-1), 1])/2 - eps |
|
|
|
idexp_lm3d[:,43:45, 1] = (idexp_lm3d[:,43:45, 1] + idexp_lm3d[:,range(47,45,-1), 1])/2 + eps |
|
idexp_lm3d[:,range(47,45,-1), 1] = (idexp_lm3d[:,43:45, 1] + idexp_lm3d[:,range(47,45,-1), 1])/2 - eps |
|
|
|
return idexp_lm3d |
|
|
|
if __name__ == '__main__': |
|
import cv2 |
|
|
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
|
|
face_mesh_helper = Face3DHelper('deep_3drecon/BFM') |
|
coeff_npy = 'data/coeff_fit_mp/crop_nana_003_coeff_fit_mp.npy' |
|
coeff_dict = np.load(coeff_npy, allow_pickle=True).tolist() |
|
lm3d = face_mesh_helper.reconstruct_lm2d(torch.tensor(coeff_dict['id']).cuda(), torch.tensor(coeff_dict['exp']).cuda(), torch.tensor(coeff_dict['euler']).cuda(), torch.tensor(coeff_dict['trans']).cuda() ) |
|
|
|
WH = 512 |
|
lm3d = (lm3d * WH).cpu().int().numpy() |
|
eye_idx = list(range(36,48)) |
|
mouth_idx = list(range(48,68)) |
|
import imageio |
|
debug_name = 'debug_lm3d.mp4' |
|
writer = imageio.get_writer(debug_name, fps=25) |
|
for i_img in range(len(lm3d)): |
|
lm2d = lm3d[i_img ,:, :2] |
|
img = np.ones([WH, WH, 3], dtype=np.uint8) * 255 |
|
for i in range(len(lm2d)): |
|
x, y = lm2d[i] |
|
if i in eye_idx: |
|
color = (0,0,255) |
|
elif i in mouth_idx: |
|
color = (0,255,0) |
|
else: |
|
color = (255,0,0) |
|
img = cv2.circle(img, center=(x,y), radius=3, color=color, thickness=-1) |
|
img = cv2.putText(img, f"{i}", org=(x,y), fontFace=font, fontScale=0.3, color=(255,0,0)) |
|
writer.append_data(img) |
|
writer.close() |
|
|