|
"""This script is the data preparation script for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import os |
|
import numpy as np |
|
import argparse |
|
from util.detect_lm68 import detect_68p,load_lm_graph |
|
from util.skin_mask import get_skin_mask |
|
from util.generate_list import check_list, write_list |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--data_root', type=str, default='datasets', help='root directory for training data') |
|
parser.add_argument('--img_folder', nargs="+", required=True, help='folders of training images') |
|
parser.add_argument('--mode', type=str, default='train', help='train or val') |
|
opt = parser.parse_args() |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
|
|
|
def data_prepare(folder_list,mode): |
|
|
|
lm_sess,input_op,output_op = load_lm_graph('./checkpoints/lm_model/68lm_detector.pb') |
|
|
|
for img_folder in folder_list: |
|
detect_68p(img_folder,lm_sess,input_op,output_op) |
|
get_skin_mask(img_folder) |
|
|
|
|
|
msks_list = [] |
|
for img_folder in folder_list: |
|
path = os.path.join(img_folder, 'mask') |
|
msks_list += ['/'.join([img_folder, 'mask', i]) for i in sorted(os.listdir(path)) if 'jpg' in i or |
|
'png' in i or 'jpeg' in i or 'PNG' in i] |
|
|
|
imgs_list = [i.replace('mask/', '') for i in msks_list] |
|
lms_list = [i.replace('mask', 'landmarks') for i in msks_list] |
|
lms_list = ['.'.join(i.split('.')[:-1]) + '.txt' for i in lms_list] |
|
|
|
lms_list_final, imgs_list_final, msks_list_final = check_list(lms_list, imgs_list, msks_list) |
|
write_list(lms_list_final, imgs_list_final, msks_list_final, mode=mode) |
|
|
|
if __name__ == '__main__': |
|
print('Datasets:',opt.img_folder) |
|
data_prepare([os.path.join(opt.data_root,folder) for folder in opt.img_folder],opt.mode) |
|
|