|
"""This script is the test script for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import os |
|
from options.test_options import TestOptions |
|
from deep_3drecon_models import create_model |
|
from util.visualizer import MyVisualizer |
|
from util.preprocess import align_img |
|
from PIL import Image |
|
import numpy as np |
|
from util.load_mats import load_lm3d |
|
import torch |
|
|
|
def get_data_path(root='examples'): |
|
im_path = [os.path.join(root, i) for i in sorted(os.listdir(root)) if i.endswith('png') or i.endswith('jpg')] |
|
lm_path = [i.replace('png', 'txt').replace('jpg', 'txt') for i in im_path] |
|
lm_path = [os.path.join(i.replace(i.split(os.path.sep)[-1],''),'detections',i.split(os.path.sep)[-1]) for i in lm_path] |
|
return im_path, lm_path |
|
|
|
def read_data(im_path, lm_path, lm3d_std, to_tensor=True): |
|
|
|
im = Image.open(im_path).convert('RGB') |
|
W,H = im.size |
|
lm = np.loadtxt(lm_path).astype(np.float32) |
|
lm = lm.reshape([-1, 2]) |
|
lm[:, -1] = H - 1 - lm[:, -1] |
|
_, im, lm, _ = align_img(im, lm, lm3d_std) |
|
if to_tensor: |
|
im = torch.tensor(np.array(im)/255., dtype=torch.float32).permute(2, 0, 1).unsqueeze(0) |
|
lm = torch.tensor(lm).unsqueeze(0) |
|
return im, lm |
|
|
|
def main(rank, opt, name='examples'): |
|
device = torch.device(rank) |
|
torch.cuda.set_device(device) |
|
model = create_model(opt) |
|
model.setup(opt) |
|
model.device = device |
|
model.parallelize() |
|
model.eval() |
|
visualizer = MyVisualizer(opt) |
|
|
|
im_path, lm_path = get_data_path(name) |
|
lm3d_std = load_lm3d(opt.bfm_folder) |
|
|
|
for i in range(len(im_path)): |
|
print(i, im_path[i]) |
|
img_name = im_path[i].split(os.path.sep)[-1].replace('.png','').replace('.jpg','') |
|
if not os.path.isfile(lm_path[i]): |
|
print("%s is not found !!!"%lm_path[i]) |
|
continue |
|
im_tensor, lm_tensor = read_data(im_path[i], lm_path[i], lm3d_std) |
|
data = { |
|
'imgs': im_tensor, |
|
'lms': lm_tensor |
|
} |
|
model.set_input(data) |
|
model.test() |
|
visuals = model.get_current_visuals() |
|
visualizer.display_current_results(visuals, 0, opt.epoch, dataset=name.split(os.path.sep)[-1], |
|
save_results=True, count=i, name=img_name, add_image=False) |
|
|
|
model.save_mesh(os.path.join(visualizer.img_dir, name.split(os.path.sep)[-1], 'epoch_%s_%06d'%(opt.epoch, 0),img_name+'.obj')) |
|
model.save_coeff(os.path.join(visualizer.img_dir, name.split(os.path.sep)[-1], 'epoch_%s_%06d'%(opt.epoch, 0),img_name+'.mat')) |
|
|
|
if __name__ == '__main__': |
|
opt = TestOptions().parse() |
|
main(0, opt, 'deep_3drecon/datasets/examples') |
|
print(f"results saved at deep_3drecon/checkpoints/facerecon/results/") |
|
|