|
"""This script is the training script for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import os |
|
import time |
|
import numpy as np |
|
import torch |
|
from options.train_options import TrainOptions |
|
from data import create_dataset |
|
from deep_3drecon_models import create_model |
|
from util.visualizer import MyVisualizer |
|
from util.util import genvalconf |
|
import torch.multiprocessing as mp |
|
import torch.distributed as dist |
|
|
|
|
|
def setup(rank, world_size, port): |
|
os.environ['MASTER_ADDR'] = 'localhost' |
|
os.environ['MASTER_PORT'] = port |
|
|
|
|
|
dist.init_process_group("gloo", rank=rank, world_size=world_size) |
|
|
|
def cleanup(): |
|
dist.destroy_process_group() |
|
|
|
def main(rank, world_size, train_opt): |
|
val_opt = genvalconf(train_opt, isTrain=False) |
|
|
|
device = torch.device(rank) |
|
torch.cuda.set_device(device) |
|
use_ddp = train_opt.use_ddp |
|
|
|
if use_ddp: |
|
setup(rank, world_size, train_opt.ddp_port) |
|
|
|
train_dataset, val_dataset = create_dataset(train_opt, rank=rank), create_dataset(val_opt, rank=rank) |
|
train_dataset_batches, val_dataset_batches = \ |
|
len(train_dataset) // train_opt.batch_size, len(val_dataset) // val_opt.batch_size |
|
|
|
model = create_model(train_opt) |
|
model.setup(train_opt) |
|
model.device = device |
|
model.parallelize() |
|
|
|
if rank == 0: |
|
print('The batch number of training images = %d\n, \ |
|
the batch number of validation images = %d'% (train_dataset_batches, val_dataset_batches)) |
|
model.print_networks(train_opt.verbose) |
|
visualizer = MyVisualizer(train_opt) |
|
|
|
total_iters = train_dataset_batches * (train_opt.epoch_count - 1) |
|
t_data = 0 |
|
t_val = 0 |
|
optimize_time = 0.1 |
|
batch_size = 1 if train_opt.display_per_batch else train_opt.batch_size |
|
|
|
if use_ddp: |
|
dist.barrier() |
|
|
|
times = [] |
|
for epoch in range(train_opt.epoch_count, train_opt.n_epochs + 1): |
|
epoch_start_time = time.time() |
|
iter_data_time = time.time() |
|
epoch_iter = 0 |
|
|
|
train_dataset.set_epoch(epoch) |
|
for i, train_data in enumerate(train_dataset): |
|
iter_start_time = time.time() |
|
if total_iters % train_opt.print_freq == 0: |
|
t_data = iter_start_time - iter_data_time |
|
total_iters += batch_size |
|
epoch_iter += batch_size |
|
|
|
torch.cuda.synchronize() |
|
optimize_start_time = time.time() |
|
|
|
model.set_input(train_data) |
|
model.optimize_parameters() |
|
|
|
torch.cuda.synchronize() |
|
optimize_time = (time.time() - optimize_start_time) / batch_size * 0.005 + 0.995 * optimize_time |
|
|
|
if use_ddp: |
|
dist.barrier() |
|
|
|
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.display_freq == 0): |
|
model.compute_visuals() |
|
visualizer.display_current_results(model.get_current_visuals(), total_iters, epoch, |
|
save_results=True, |
|
add_image=train_opt.add_image) |
|
|
|
|
|
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.print_freq == 0): |
|
losses = model.get_current_losses() |
|
visualizer.print_current_losses(epoch, epoch_iter, losses, optimize_time, t_data) |
|
visualizer.plot_current_losses(total_iters, losses) |
|
|
|
if total_iters == batch_size or total_iters % train_opt.evaluation_freq == 0: |
|
with torch.no_grad(): |
|
torch.cuda.synchronize() |
|
val_start_time = time.time() |
|
losses_avg = {} |
|
model.eval() |
|
for j, val_data in enumerate(val_dataset): |
|
model.set_input(val_data) |
|
model.optimize_parameters(isTrain=False) |
|
if rank == 0 and j < train_opt.vis_batch_nums: |
|
model.compute_visuals() |
|
visualizer.display_current_results(model.get_current_visuals(), total_iters, epoch, |
|
dataset='val', save_results=True, count=j * val_opt.batch_size, |
|
add_image=train_opt.add_image) |
|
|
|
if j < train_opt.eval_batch_nums: |
|
losses = model.get_current_losses() |
|
for key, value in losses.items(): |
|
losses_avg[key] = losses_avg.get(key, 0) + value |
|
|
|
for key, value in losses_avg.items(): |
|
losses_avg[key] = value / min(train_opt.eval_batch_nums, val_dataset_batches) |
|
|
|
torch.cuda.synchronize() |
|
eval_time = time.time() - val_start_time |
|
|
|
if rank == 0: |
|
visualizer.print_current_losses(epoch, epoch_iter, losses_avg, eval_time, t_data, dataset='val') |
|
visualizer.plot_current_losses(total_iters, losses_avg, dataset='val') |
|
model.train() |
|
|
|
if use_ddp: |
|
dist.barrier() |
|
|
|
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.save_latest_freq == 0): |
|
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) |
|
print(train_opt.name) |
|
save_suffix = 'iter_%d' % total_iters if train_opt.save_by_iter else 'latest' |
|
model.save_networks(save_suffix) |
|
|
|
if use_ddp: |
|
dist.barrier() |
|
|
|
iter_data_time = time.time() |
|
|
|
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, train_opt.n_epochs, time.time() - epoch_start_time)) |
|
model.update_learning_rate() |
|
|
|
if rank == 0 and epoch % train_opt.save_epoch_freq == 0: |
|
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) |
|
model.save_networks('latest') |
|
model.save_networks(epoch) |
|
|
|
if use_ddp: |
|
dist.barrier() |
|
|
|
if __name__ == '__main__': |
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
train_opt = TrainOptions().parse() |
|
world_size = train_opt.world_size |
|
|
|
if train_opt.use_ddp: |
|
mp.spawn(main, args=(world_size, train_opt), nprocs=world_size, join=True) |
|
else: |
|
main(0, world_size, train_opt) |
|
|