|
from numpy import isin |
|
import torch |
|
import torch.nn as nn |
|
from modules.audio2motion.transformer_base import * |
|
|
|
DEFAULT_MAX_SOURCE_POSITIONS = 2000 |
|
DEFAULT_MAX_TARGET_POSITIONS = 2000 |
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
def __init__(self, hidden_size, dropout, kernel_size=None, num_heads=2, norm='ln'): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.dropout = dropout |
|
self.num_heads = num_heads |
|
self.op = EncSALayer( |
|
hidden_size, num_heads, dropout=dropout, |
|
attention_dropout=0.0, relu_dropout=dropout, |
|
kernel_size=kernel_size |
|
if kernel_size is not None else 9, |
|
padding='SAME', |
|
norm=norm, act='gelu' |
|
) |
|
|
|
def forward(self, x, **kwargs): |
|
return self.op(x, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
class LayerNorm(torch.nn.LayerNorm): |
|
"""Layer normalization module. |
|
:param int nout: output dim size |
|
:param int dim: dimension to be normalized |
|
""" |
|
|
|
def __init__(self, nout, dim=-1, eps=1e-5): |
|
"""Construct an LayerNorm object.""" |
|
super(LayerNorm, self).__init__(nout, eps=eps) |
|
self.dim = dim |
|
|
|
def forward(self, x): |
|
"""Apply layer normalization. |
|
:param torch.Tensor x: input tensor |
|
:return: layer normalized tensor |
|
:rtype torch.Tensor |
|
""" |
|
if self.dim == -1: |
|
return super(LayerNorm, self).forward(x) |
|
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) |
|
|
|
|
|
class FFTBlocks(nn.Module): |
|
def __init__(self, hidden_size, num_layers, ffn_kernel_size=9, dropout=None, |
|
num_heads=2, use_pos_embed=True, use_last_norm=True, norm='ln', |
|
use_pos_embed_alpha=True): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
embed_dim = self.hidden_size = hidden_size |
|
self.dropout = dropout if dropout is not None else 0.1 |
|
self.use_pos_embed = use_pos_embed |
|
self.use_last_norm = use_last_norm |
|
if use_pos_embed: |
|
self.max_source_positions = DEFAULT_MAX_TARGET_POSITIONS |
|
self.padding_idx = 0 |
|
self.pos_embed_alpha = nn.Parameter(torch.Tensor([1])) if use_pos_embed_alpha else 1 |
|
self.embed_positions = SinusoidalPositionalEmbedding( |
|
embed_dim, self.padding_idx, init_size=DEFAULT_MAX_TARGET_POSITIONS, |
|
) |
|
|
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend([ |
|
TransformerEncoderLayer(self.hidden_size, self.dropout, |
|
kernel_size=ffn_kernel_size, num_heads=num_heads, |
|
norm=norm) |
|
for _ in range(self.num_layers) |
|
]) |
|
if self.use_last_norm: |
|
if norm == 'ln': |
|
self.layer_norm = nn.LayerNorm(embed_dim) |
|
elif norm == 'bn': |
|
self.layer_norm = BatchNorm1dTBC(embed_dim) |
|
elif norm == 'gn': |
|
self.layer_norm = GroupNorm1DTBC(8, embed_dim) |
|
else: |
|
self.layer_norm = None |
|
|
|
def forward(self, x, padding_mask=None, attn_mask=None, return_hiddens=False): |
|
""" |
|
:param x: [B, T, C] |
|
:param padding_mask: [B, T] |
|
:return: [B, T, C] or [L, B, T, C] |
|
""" |
|
padding_mask = x.abs().sum(-1).eq(0).data if padding_mask is None else padding_mask |
|
nonpadding_mask_TB = 1 - padding_mask.transpose(0, 1).float()[:, :, None] |
|
if self.use_pos_embed: |
|
positions = self.pos_embed_alpha * self.embed_positions(x[..., 0]) |
|
x = x + positions |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
x = x.transpose(0, 1) * nonpadding_mask_TB |
|
hiddens = [] |
|
for layer in self.layers: |
|
x = layer(x, encoder_padding_mask=padding_mask, attn_mask=attn_mask) * nonpadding_mask_TB |
|
hiddens.append(x) |
|
if self.use_last_norm: |
|
x = self.layer_norm(x) * nonpadding_mask_TB |
|
if return_hiddens: |
|
x = torch.stack(hiddens, 0) |
|
x = x.transpose(1, 2) |
|
else: |
|
x = x.transpose(0, 1) |
|
return x |
|
|
|
class SequentialSA(nn.Module): |
|
def __init__(self,layers): |
|
super(SequentialSA,self).__init__() |
|
self.layers = nn.ModuleList(layers) |
|
|
|
def forward(self,x,x_mask): |
|
""" |
|
x: [batch, T, H] |
|
x_mask: [batch, T] |
|
""" |
|
pad_mask = 1. - x_mask |
|
for layer in self.layers: |
|
if isinstance(layer, EncSALayer): |
|
x = x.permute(1,0,2) |
|
x = layer(x,pad_mask) |
|
x = x.permute(1,0,2) |
|
elif isinstance(layer, nn.Linear): |
|
x = layer(x) * x_mask.unsqueeze(2) |
|
elif isinstance(layer, nn.AvgPool1d): |
|
x = x.permute(0,2,1) |
|
x = layer(x) |
|
x = x.permute(0,2,1) |
|
elif isinstance(layer, nn.PReLU): |
|
bs, t, hid = x.shape |
|
x = x.reshape([bs*t,hid]) |
|
x = layer(x) |
|
x = x.reshape([bs, t, hid]) |
|
else: |
|
x = layer(x) |
|
|
|
return x |
|
|
|
class TransformerStyleFusionModel(nn.Module): |
|
def __init__(self, num_heads=4, dropout = 0.1, out_dim = 64): |
|
super(TransformerStyleFusionModel, self).__init__() |
|
self.audio_layer = SequentialSA([ |
|
nn.Linear(29, 48), |
|
nn.ReLU(48), |
|
nn.Linear(48, 128), |
|
]) |
|
|
|
self.energy_layer = SequentialSA([ |
|
nn.Linear(1, 16), |
|
nn.ReLU(16), |
|
nn.Linear(16, 64), |
|
]) |
|
|
|
self.backbone1 = FFTBlocks(hidden_size=192,num_layers=3) |
|
|
|
self.sty_encoder = nn.Sequential(*[ |
|
nn.Linear(135, 64), |
|
nn.ReLU(), |
|
nn.Linear(64, 128) |
|
]) |
|
|
|
self.backbone2 = FFTBlocks(hidden_size=320,num_layers=3) |
|
|
|
self.out_layer = SequentialSA([ |
|
nn.AvgPool1d(kernel_size=2,stride=2,padding=0), |
|
nn.Linear(320,out_dim), |
|
nn.PReLU(out_dim), |
|
nn.Linear(out_dim,out_dim), |
|
]) |
|
|
|
self.dropout = nn.Dropout(p = dropout) |
|
|
|
def forward(self, audio, energy, style, x_mask, y_mask): |
|
pad_mask = 1. - x_mask |
|
audio_feat = self.audio_layer(audio, x_mask) |
|
energy_feat = self.energy_layer(energy, x_mask) |
|
feat = torch.cat((audio_feat, energy_feat), dim=-1) |
|
feat = self.backbone1(feat, pad_mask) |
|
feat = self.dropout(feat) |
|
|
|
sty_feat = self.sty_encoder(style) |
|
sty_feat = sty_feat.unsqueeze(1).repeat(1, feat.shape[1], 1) |
|
|
|
feat = torch.cat([feat, sty_feat], dim=-1) |
|
feat = self.backbone2(feat, pad_mask) |
|
out = self.out_layer(feat, y_mask) |
|
|
|
return out |
|
|
|
|
|
if __name__ == '__main__': |
|
model = TransformerStyleFusionModel() |
|
audio = torch.rand(4,200,29) |
|
energy = torch.rand(4,200,1) |
|
style = torch.ones(4,135) |
|
x_mask = torch.ones(4,200) |
|
x_mask[3,10:] = 0 |
|
ret = model(audio,energy,style, x_mask) |
|
print(" ") |