|
import scipy |
|
from scipy import linalg |
|
from torch.nn import functional as F |
|
import torch |
|
from torch import nn |
|
import numpy as np |
|
from modules.audio2motion.transformer_models import FFTBlocks |
|
import modules.audio2motion.utils as utils |
|
from modules.audio2motion.flow_base import Glow, WN, ResidualCouplingBlock |
|
import torch.distributions as dist |
|
from modules.audio2motion.cnn_models import LambdaLayer, LayerNorm |
|
|
|
from vector_quantize_pytorch import VectorQuantize |
|
|
|
|
|
class FVAEEncoder(nn.Module): |
|
def __init__(self, in_channels, hidden_channels, latent_channels, kernel_size, |
|
n_layers, gin_channels=0, p_dropout=0, strides=[4]): |
|
super().__init__() |
|
self.strides = strides |
|
self.hidden_size = hidden_channels |
|
self.pre_net = nn.Sequential(*[ |
|
nn.Conv1d(in_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2) |
|
if i == 0 else |
|
nn.Conv1d(hidden_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2) |
|
for i, s in enumerate(strides) |
|
]) |
|
self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout) |
|
self.out_proj = nn.Conv1d(hidden_channels, latent_channels * 2, 1) |
|
self.latent_channels = latent_channels |
|
|
|
def forward(self, x, x_mask, g): |
|
x = self.pre_net(x) |
|
x_mask = x_mask[:, :, ::np.prod(self.strides)][:, :, :x.shape[-1]] |
|
x = x * x_mask |
|
x = self.wn(x, x_mask, g) * x_mask |
|
x = self.out_proj(x) |
|
m, logs = torch.split(x, self.latent_channels, dim=1) |
|
z = (m + torch.randn_like(m) * torch.exp(logs)) |
|
return z, m, logs, x_mask |
|
|
|
|
|
class FVAEDecoder(nn.Module): |
|
def __init__(self, latent_channels, hidden_channels, out_channels, kernel_size, |
|
n_layers, gin_channels=0, p_dropout=0, |
|
strides=[4]): |
|
super().__init__() |
|
self.strides = strides |
|
self.hidden_size = hidden_channels |
|
self.pre_net = nn.Sequential(*[ |
|
nn.ConvTranspose1d(latent_channels, hidden_channels, kernel_size=s, stride=s) |
|
if i == 0 else |
|
nn.ConvTranspose1d(hidden_channels, hidden_channels, kernel_size=s, stride=s) |
|
for i, s in enumerate(strides) |
|
]) |
|
self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout) |
|
self.out_proj = nn.Conv1d(hidden_channels, out_channels, 1) |
|
|
|
def forward(self, x, x_mask, g): |
|
x = self.pre_net(x) |
|
x = x * x_mask |
|
x = self.wn(x, x_mask, g) * x_mask |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class VQVAE(nn.Module): |
|
def __init__(self, |
|
in_out_channels=64, hidden_channels=256, latent_size=16, |
|
kernel_size=3, enc_n_layers=5, dec_n_layers=5, gin_channels=80, strides=[4,], |
|
sqz_prior=False): |
|
super().__init__() |
|
self.in_out_channels = in_out_channels |
|
self.strides = strides |
|
self.hidden_size = hidden_channels |
|
self.latent_size = latent_size |
|
self.g_pre_net = nn.Sequential(*[ |
|
nn.Conv1d(gin_channels, gin_channels, kernel_size=s * 2, stride=s, padding=s // 2) |
|
for i, s in enumerate(strides) |
|
]) |
|
self.encoder = FVAEEncoder(in_out_channels, hidden_channels, hidden_channels, kernel_size, |
|
enc_n_layers, gin_channels, strides=strides) |
|
|
|
|
|
|
|
self.vq = VectorQuantize(dim=hidden_channels, codebook_size=256, codebook_dim=16) |
|
|
|
self.decoder = FVAEDecoder(hidden_channels, hidden_channels, in_out_channels, kernel_size, |
|
dec_n_layers, gin_channels, strides=strides) |
|
self.prior_dist = dist.Normal(0, 1) |
|
self.sqz_prior = sqz_prior |
|
|
|
def forward(self, x=None, x_mask=None, g=None, infer=False, **kwargs): |
|
""" |
|
|
|
:param x: [B, T, C_in_out] |
|
:param x_mask: [B, T] |
|
:param g: [B, T, C_g] |
|
:return: |
|
""" |
|
x_mask = x_mask[:, None, :] |
|
g = g.transpose(1,2) |
|
g_for_sqz = g |
|
|
|
g_sqz = self.g_pre_net(g_for_sqz) |
|
|
|
if not infer: |
|
x = x.transpose(1,2) |
|
z_q, m_q, logs_q, x_mask_sqz = self.encoder(x, x_mask, g_sqz) |
|
if self.sqz_prior: |
|
z_q = F.interpolate(z_q, scale_factor=1/8) |
|
z_p, idx, commit_loss = self.vq(z_q.transpose(1,2)) |
|
if self.sqz_prior: |
|
z_p = F.interpolate(z_p.transpose(1,2),scale_factor=8).transpose(1,2) |
|
|
|
x_recon = self.decoder(z_p.transpose(1,2), x_mask, g) |
|
return x_recon.transpose(1,2), commit_loss, z_p.transpose(1,2), m_q.transpose(1,2), logs_q.transpose(1,2) |
|
else: |
|
bs, t = g_sqz.shape[0], g_sqz.shape[2] |
|
if self.sqz_prior: |
|
t = t // 8 |
|
latent_shape = [int(bs * t)] |
|
latent_idx = torch.randint(0,256,latent_shape).to(self.vq.codebook.device) |
|
|
|
|
|
z_p = self.vq.codebook[latent_idx] |
|
z_p = z_p.reshape([bs, t, -1]) |
|
z_p = self.vq.project_out(z_p) |
|
if self.sqz_prior: |
|
z_p = F.interpolate(z_p.transpose(1,2),scale_factor=8).transpose(1,2) |
|
|
|
x_recon = self.decoder(z_p.transpose(1,2), 1, g) |
|
return x_recon.transpose(1,2), z_p.transpose(1,2) |
|
|
|
|
|
class VQVAEModel(nn.Module): |
|
def __init__(self, in_out_dim=71, sqz_prior=False, enc_no_cond=False): |
|
super().__init__() |
|
self.mel_encoder = nn.Sequential(*[ |
|
nn.Conv1d(80, 64, 3, 1, 1, bias=False), |
|
nn.BatchNorm1d(64), |
|
nn.GELU(), |
|
nn.Conv1d(64, 64, 3, 1, 1, bias=False) |
|
]) |
|
self.in_dim, self.out_dim = in_out_dim, in_out_dim |
|
self.sqz_prior = sqz_prior |
|
self.enc_no_cond = enc_no_cond |
|
self.vae = VQVAE(in_out_channels=in_out_dim, hidden_channels=256, latent_size=16, kernel_size=5, |
|
enc_n_layers=8, dec_n_layers=4, gin_channels=64, strides=[4,], sqz_prior=sqz_prior) |
|
self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='nearest').transpose(1,2)) |
|
|
|
@property |
|
def device(self): |
|
return self.vae.parameters().__next__().device |
|
|
|
def forward(self, batch, ret, log_dict=None, train=True): |
|
infer = not train |
|
mask = batch['y_mask'].to(self.device) |
|
mel = batch['mel'].to(self.device) |
|
mel = self.downsampler(mel) |
|
|
|
mel_feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2) |
|
if not infer: |
|
exp = batch['exp'].to(self.device) |
|
pose = batch['pose'].to(self.device) |
|
if self.in_dim == 71: |
|
x = torch.cat([exp, pose], dim=-1) |
|
elif self.in_dim == 64: |
|
x = exp |
|
elif self.in_dim == 7: |
|
x = pose |
|
if self.enc_no_cond: |
|
x_recon, loss_commit, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=torch.zeros_like(mel_feat), infer=False) |
|
else: |
|
x_recon, loss_commit, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=mel_feat, infer=False) |
|
loss_commit = loss_commit.reshape([]) |
|
ret['pred'] = x_recon |
|
ret['mask'] = mask |
|
ret['loss_commit'] = loss_commit |
|
return x_recon, loss_commit, m_q, logs_q |
|
else: |
|
x_recon, z_p = self.vae(x=None, x_mask=mask, g=mel_feat, infer=True) |
|
return x_recon |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def num_params(self, model, print_out=True, model_name="model"): |
|
parameters = filter(lambda p: p.requires_grad, model.parameters()) |
|
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 |
|
if print_out: |
|
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters) |
|
return parameters |
|
|