ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
import scipy
from scipy import linalg
from torch.nn import functional as F
import torch
from torch import nn
import numpy as np
from modules.audio2motion.transformer_models import FFTBlocks
import modules.audio2motion.utils as utils
from modules.audio2motion.flow_base import Glow, WN, ResidualCouplingBlock
import torch.distributions as dist
from modules.audio2motion.cnn_models import LambdaLayer, LayerNorm
from vector_quantize_pytorch import VectorQuantize
class FVAEEncoder(nn.Module):
def __init__(self, in_channels, hidden_channels, latent_channels, kernel_size,
n_layers, gin_channels=0, p_dropout=0, strides=[4]):
super().__init__()
self.strides = strides
self.hidden_size = hidden_channels
self.pre_net = nn.Sequential(*[
nn.Conv1d(in_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2)
if i == 0 else
nn.Conv1d(hidden_channels, hidden_channels, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout)
self.out_proj = nn.Conv1d(hidden_channels, latent_channels * 2, 1)
self.latent_channels = latent_channels
def forward(self, x, x_mask, g):
x = self.pre_net(x)
x_mask = x_mask[:, :, ::np.prod(self.strides)][:, :, :x.shape[-1]]
x = x * x_mask
x = self.wn(x, x_mask, g) * x_mask
x = self.out_proj(x)
m, logs = torch.split(x, self.latent_channels, dim=1)
z = (m + torch.randn_like(m) * torch.exp(logs))
return z, m, logs, x_mask
class FVAEDecoder(nn.Module):
def __init__(self, latent_channels, hidden_channels, out_channels, kernel_size,
n_layers, gin_channels=0, p_dropout=0,
strides=[4]):
super().__init__()
self.strides = strides
self.hidden_size = hidden_channels
self.pre_net = nn.Sequential(*[
nn.ConvTranspose1d(latent_channels, hidden_channels, kernel_size=s, stride=s)
if i == 0 else
nn.ConvTranspose1d(hidden_channels, hidden_channels, kernel_size=s, stride=s)
for i, s in enumerate(strides)
])
self.wn = WN(hidden_channels, kernel_size, 1, n_layers, gin_channels, p_dropout)
self.out_proj = nn.Conv1d(hidden_channels, out_channels, 1)
def forward(self, x, x_mask, g):
x = self.pre_net(x)
x = x * x_mask
x = self.wn(x, x_mask, g) * x_mask
x = self.out_proj(x)
return x
class VQVAE(nn.Module):
def __init__(self,
in_out_channels=64, hidden_channels=256, latent_size=16,
kernel_size=3, enc_n_layers=5, dec_n_layers=5, gin_channels=80, strides=[4,],
sqz_prior=False):
super().__init__()
self.in_out_channels = in_out_channels
self.strides = strides
self.hidden_size = hidden_channels
self.latent_size = latent_size
self.g_pre_net = nn.Sequential(*[
nn.Conv1d(gin_channels, gin_channels, kernel_size=s * 2, stride=s, padding=s // 2)
for i, s in enumerate(strides)
])
self.encoder = FVAEEncoder(in_out_channels, hidden_channels, hidden_channels, kernel_size,
enc_n_layers, gin_channels, strides=strides)
# if use_prior_glow:
# self.prior_flow = ResidualCouplingBlock(
# latent_size, glow_hidden, glow_kernel_size, 1, glow_n_blocks, 4, gin_channels=gin_channels)
self.vq = VectorQuantize(dim=hidden_channels, codebook_size=256, codebook_dim=16)
self.decoder = FVAEDecoder(hidden_channels, hidden_channels, in_out_channels, kernel_size,
dec_n_layers, gin_channels, strides=strides)
self.prior_dist = dist.Normal(0, 1)
self.sqz_prior = sqz_prior
def forward(self, x=None, x_mask=None, g=None, infer=False, **kwargs):
"""
:param x: [B, T, C_in_out]
:param x_mask: [B, T]
:param g: [B, T, C_g]
:return:
"""
x_mask = x_mask[:, None, :] # [B, 1, T]
g = g.transpose(1,2) # [B, C_g, T]
g_for_sqz = g
g_sqz = self.g_pre_net(g_for_sqz)
if not infer:
x = x.transpose(1,2) # [B, C, T]
z_q, m_q, logs_q, x_mask_sqz = self.encoder(x, x_mask, g_sqz)
if self.sqz_prior:
z_q = F.interpolate(z_q, scale_factor=1/8)
z_p, idx, commit_loss = self.vq(z_q.transpose(1,2))
if self.sqz_prior:
z_p = F.interpolate(z_p.transpose(1,2),scale_factor=8).transpose(1,2)
x_recon = self.decoder(z_p.transpose(1,2), x_mask, g)
return x_recon.transpose(1,2), commit_loss, z_p.transpose(1,2), m_q.transpose(1,2), logs_q.transpose(1,2)
else:
bs, t = g_sqz.shape[0], g_sqz.shape[2]
if self.sqz_prior:
t = t // 8
latent_shape = [int(bs * t)]
latent_idx = torch.randint(0,256,latent_shape).to(self.vq.codebook.device)
# latent_idx = torch.ones_like(latent_idx, dtype=torch.long)
# z_p = torch.gather(self.vq.codebook, 0, latent_idx)# self.vq.codebook[latent_idx]
z_p = self.vq.codebook[latent_idx]
z_p = z_p.reshape([bs, t, -1])
z_p = self.vq.project_out(z_p)
if self.sqz_prior:
z_p = F.interpolate(z_p.transpose(1,2),scale_factor=8).transpose(1,2)
x_recon = self.decoder(z_p.transpose(1,2), 1, g)
return x_recon.transpose(1,2), z_p.transpose(1,2)
class VQVAEModel(nn.Module):
def __init__(self, in_out_dim=71, sqz_prior=False, enc_no_cond=False):
super().__init__()
self.mel_encoder = nn.Sequential(*[
nn.Conv1d(80, 64, 3, 1, 1, bias=False),
nn.BatchNorm1d(64),
nn.GELU(),
nn.Conv1d(64, 64, 3, 1, 1, bias=False)
])
self.in_dim, self.out_dim = in_out_dim, in_out_dim
self.sqz_prior = sqz_prior
self.enc_no_cond = enc_no_cond
self.vae = VQVAE(in_out_channels=in_out_dim, hidden_channels=256, latent_size=16, kernel_size=5,
enc_n_layers=8, dec_n_layers=4, gin_channels=64, strides=[4,], sqz_prior=sqz_prior)
self.downsampler = LambdaLayer(lambda x: F.interpolate(x.transpose(1,2), scale_factor=0.5, mode='nearest').transpose(1,2))
@property
def device(self):
return self.vae.parameters().__next__().device
def forward(self, batch, ret, log_dict=None, train=True):
infer = not train
mask = batch['y_mask'].to(self.device)
mel = batch['mel'].to(self.device)
mel = self.downsampler(mel)
mel_feat = self.mel_encoder(mel.transpose(1,2)).transpose(1,2)
if not infer:
exp = batch['exp'].to(self.device)
pose = batch['pose'].to(self.device)
if self.in_dim == 71:
x = torch.cat([exp, pose], dim=-1) # [B, T, C=64 + 7]
elif self.in_dim == 64:
x = exp
elif self.in_dim == 7:
x = pose
if self.enc_no_cond:
x_recon, loss_commit, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=torch.zeros_like(mel_feat), infer=False)
else:
x_recon, loss_commit, z_p, m_q, logs_q = self.vae(x=x, x_mask=mask, g=mel_feat, infer=False)
loss_commit = loss_commit.reshape([])
ret['pred'] = x_recon
ret['mask'] = mask
ret['loss_commit'] = loss_commit
return x_recon, loss_commit, m_q, logs_q
else:
x_recon, z_p = self.vae(x=None, x_mask=mask, g=mel_feat, infer=True)
return x_recon
# def __get_feat(self, exp, pose):
# diff_exp = exp[:-1, :] - exp[1:, :]
# exp_std = (np.std(exp, axis = 0) - self.exp_std_mean) / self.exp_std_std
# diff_exp_std = (np.std(diff_exp, axis = 0) - self.exp_diff_std_mean) / self.exp_diff_std_std
# diff_pose = pose[:-1, :] - pose[1:, :]
# diff_pose_std = (np.std(diff_pose, axis = 0) - self.pose_diff_std_mean) / self.pose_diff_std_std
# return np.concatenate((exp_std, diff_exp_std, diff_pose_std))
def num_params(self, model, print_out=True, model_name="model"):
parameters = filter(lambda p: p.requires_grad, model.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print(f'| {model_name} Trainable Parameters: %.3fM' % parameters)
return parameters