|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Discriminator architectures from the paper |
|
"Efficient Geometry-aware 3D Generative Adversarial Networks".""" |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from modules.eg3ds.torch_utils.ops import upfirdn2d |
|
from modules.eg3ds.models.networks_stylegan2 import DiscriminatorBlock, MappingNetwork, DiscriminatorEpilogue |
|
from modules.eg3ds.models.cond_encoder import LM3D_Win_Encoder |
|
|
|
from utils.commons.hparams import hparams |
|
|
|
|
|
class SingleDiscriminator(torch.nn.Module): |
|
def __init__(self, |
|
img_resolution, |
|
img_channels =3, |
|
architecture = 'resnet', |
|
channel_base = 32768, |
|
channel_max = 512, |
|
num_fp16_res = 4, |
|
conv_clamp = 256, |
|
cmap_dim = None, |
|
sr_upsample_factor = 1, |
|
block_kwargs = {}, |
|
mapping_kwargs = {}, |
|
epilogue_kwargs = {}, |
|
): |
|
super().__init__() |
|
self.camera_dim = 25 |
|
if hparams['cond_type'] == 'idexp_lm3d_normalized': |
|
self.cond_dim = 204 |
|
else: |
|
self.cond_dim = 0 |
|
c_dim = self.camera_dim |
|
if self.cond_dim > 0: |
|
cond_out_dim = hparams['cond_out_dim'] |
|
c_dim += cond_out_dim |
|
self.cond_encoder = LM3D_Win_Encoder(self.cond_dim, hid_dim=hparams['cond_hid_dim'], out_dim=cond_out_dim, smo_size=hparams['smo_win_size']) |
|
self.c_dim = c_dim |
|
|
|
self.img_resolution = img_resolution |
|
self.img_resolution_log2 = int(np.log2(img_resolution)) |
|
self.img_channels = img_channels |
|
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)] |
|
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]} |
|
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) |
|
|
|
if cmap_dim is None: |
|
cmap_dim = channels_dict[4] |
|
if c_dim == 0: |
|
cmap_dim = 0 |
|
|
|
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp) |
|
cur_layer_idx = 0 |
|
for res in self.block_resolutions: |
|
in_channels = channels_dict[res] if res < img_resolution else 0 |
|
tmp_channels = channels_dict[res] |
|
out_channels = channels_dict[res // 2] |
|
use_fp16 = (res >= fp16_resolution) |
|
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res, |
|
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs) |
|
setattr(self, f'b{res}', block) |
|
cur_layer_idx += block.num_layers |
|
if c_dim > 0: |
|
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs) |
|
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs) |
|
|
|
def forward(self, img, camera, cond=None, update_emas=False, **block_kwargs): |
|
img = img['image'] |
|
|
|
_ = update_emas |
|
x = None |
|
for res in self.block_resolutions: |
|
block = getattr(self, f'b{res}') |
|
x, img = block(x, img, **block_kwargs) |
|
|
|
cmap = None |
|
c = camera |
|
if self.cond_dim > 0: |
|
cond_feat = self.cond_encoder(cond) |
|
c = torch.cat([c, cond_feat], dim=-1) |
|
|
|
cmap = self.mapping(None, c) |
|
x = self.b4(x, img, cmap) |
|
return x |
|
|
|
def extra_repr(self): |
|
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}' |
|
|
|
|
|
|
|
def filtered_resizing(image_orig_tensor, size, f, filter_mode='antialiased'): |
|
if filter_mode == 'antialiased': |
|
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=True) |
|
elif filter_mode == 'classic': |
|
ada_filtered_64 = upfirdn2d.upsample2d(image_orig_tensor, f, up=2) |
|
ada_filtered_64 = torch.nn.functional.interpolate(ada_filtered_64, size=(size * 2 + 2, size * 2 + 2), mode='bilinear', align_corners=False) |
|
ada_filtered_64 = upfirdn2d.downsample2d(ada_filtered_64, f, down=2, flip_filter=True, padding=-1) |
|
elif filter_mode == 'none': |
|
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False) |
|
elif type(filter_mode) == float: |
|
assert 0 < filter_mode < 1 |
|
|
|
filtered = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=True) |
|
aliased = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=False) |
|
ada_filtered_64 = (1 - filter_mode) * aliased + (filter_mode) * filtered |
|
|
|
return ada_filtered_64 |
|
|
|
|
|
|
|
class DualDiscriminator(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
channel_base = hparams['base_channel'] |
|
channel_max = hparams['max_channel'] |
|
conv_clamp = 256 |
|
cmap_dim = None |
|
disc_c_noise = 0. |
|
block_kwargs = {'freeze_layers': 0} |
|
mapping_kwargs = {} |
|
epilogue_kwargs = {'mbstd_group_size': 4} |
|
architecture = 'resnet' |
|
|
|
img_channels = 3 |
|
img_channels *= 2 |
|
|
|
self.camera_dim = 25 |
|
if hparams['cond_type'] == 'idexp_lm3d_normalized': |
|
self.cond_dim = 204 |
|
else: |
|
self.cond_dim = 0 |
|
c_dim = self.camera_dim |
|
|
|
if self.cond_dim > 0: |
|
cond_out_dim = hparams['cond_out_dim'] |
|
c_dim += cond_out_dim |
|
self.cond_encoder = LM3D_Win_Encoder(self.cond_dim, hid_dim=hparams['cond_hid_dim'], out_dim=cond_out_dim, smo_size=hparams['smo_win_size']) |
|
|
|
self.img_resolution = hparams['final_resolution'] |
|
self.img_resolution_log2 = int(np.log2(self.img_resolution)) |
|
self.img_channels = 3 |
|
|
|
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)] |
|
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]} |
|
self.num_fp16_res = hparams['num_fp16_layers_in_discriminator'] |
|
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - self.num_fp16_res), 8) |
|
if cmap_dim is None: |
|
cmap_dim = channels_dict[4] |
|
if c_dim == 0: |
|
cmap_dim = 0 |
|
|
|
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp) |
|
cur_layer_idx = 0 |
|
for res in self.block_resolutions: |
|
in_channels = channels_dict[res] if res < self.img_resolution else 0 |
|
tmp_channels = channels_dict[res] |
|
out_channels = channels_dict[res // 2] |
|
use_fp16 = (res >= fp16_resolution) |
|
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res, |
|
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs) |
|
setattr(self, f'b{res}', block) |
|
cur_layer_idx += block.num_layers |
|
|
|
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs) |
|
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs) |
|
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1])) |
|
self.disc_c_noise = disc_c_noise |
|
|
|
def forward(self, img, camera, cond=None, update_emas=False, **block_kwargs): |
|
image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter) |
|
img = torch.cat([img['image'], image_raw], 1) |
|
|
|
_ = update_emas |
|
x = None |
|
for res in self.block_resolutions: |
|
block = getattr(self, f'b{res}') |
|
x, img = block(x, img, **block_kwargs) |
|
|
|
cmap = None |
|
|
|
c = camera |
|
if self.cond_dim > 0: |
|
cond_feat = self.cond_encoder(cond) |
|
c = torch.cat([c, cond_feat], dim=-1) |
|
if self.disc_c_noise > 0: |
|
c += torch.randn_like(c) * c.std(0) * self.disc_c_noise |
|
|
|
cmap = self.mapping(None, c) |
|
x = self.b4(x, img, cmap) |
|
return x |
|
|
|
def extra_repr(self): |
|
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}' |
|
|
|
|
|
|
|
class DummyDualDiscriminator(torch.nn.Module): |
|
def __init__(self, |
|
c_dim, |
|
img_resolution, |
|
img_channels, |
|
architecture = 'resnet', |
|
channel_base = 32768, |
|
channel_max = 512, |
|
num_fp16_res = 4, |
|
conv_clamp = 256, |
|
cmap_dim = None, |
|
block_kwargs = {}, |
|
mapping_kwargs = {}, |
|
epilogue_kwargs = {}, |
|
): |
|
super().__init__() |
|
img_channels *= 2 |
|
|
|
self.c_dim = c_dim |
|
self.img_resolution = img_resolution |
|
self.img_resolution_log2 = int(np.log2(img_resolution)) |
|
self.img_channels = img_channels |
|
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)] |
|
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]} |
|
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8) |
|
|
|
if cmap_dim is None: |
|
cmap_dim = channels_dict[4] |
|
if c_dim == 0: |
|
cmap_dim = 0 |
|
|
|
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp) |
|
cur_layer_idx = 0 |
|
for res in self.block_resolutions: |
|
in_channels = channels_dict[res] if res < img_resolution else 0 |
|
tmp_channels = channels_dict[res] |
|
out_channels = channels_dict[res // 2] |
|
use_fp16 = (res >= fp16_resolution) |
|
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res, |
|
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs) |
|
setattr(self, f'b{res}', block) |
|
cur_layer_idx += block.num_layers |
|
if c_dim > 0: |
|
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs) |
|
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs) |
|
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1])) |
|
|
|
self.raw_fade = 1 |
|
|
|
def forward(self, img, c, update_emas=False, **block_kwargs): |
|
self.raw_fade = max(0, self.raw_fade - 1/(500000/32)) |
|
|
|
image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter) * self.raw_fade |
|
img = torch.cat([img['image'], image_raw], 1) |
|
|
|
_ = update_emas |
|
x = None |
|
for res in self.block_resolutions: |
|
block = getattr(self, f'b{res}') |
|
x, img = block(x, img, **block_kwargs) |
|
|
|
cmap = None |
|
if self.c_dim > 0: |
|
cmap = self.mapping(None, c) |
|
x = self.b4(x, img, cmap) |
|
return x |
|
|
|
def extra_repr(self): |
|
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}' |
|
|
|
|
|
|