|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Superresolution network architectures from the paper |
|
"Efficient Geometry-aware 3D Generative Adversarial Networks".""" |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from modules.eg3ds.models.networks_stylegan2 import Conv2dLayer, SynthesisLayer, ToRGBLayer |
|
from modules.eg3ds.torch_utils.ops import upfirdn2d |
|
from modules.eg3ds.torch_utils import misc |
|
|
|
from modules.eg3ds.models.networks_stylegan2 import SynthesisBlock |
|
from modules.eg3ds.models.networks_stylegan3 import SynthesisLayer as AFSynthesisLayer |
|
from utils.commons.hparams import hparams |
|
|
|
|
|
|
|
|
|
|
|
class SuperresolutionHybrid8X(torch.nn.Module): |
|
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias, |
|
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None, |
|
**block_kwargs): |
|
super().__init__() |
|
assert img_resolution == 512 |
|
|
|
use_fp16 = sr_num_fp16_res > 0 |
|
self.input_resolution = 128 |
|
self.sr_antialias = sr_antialias |
|
self.block0 = SynthesisBlock(channels, 128, w_dim=512, resolution=256, |
|
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=512, |
|
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1])) |
|
|
|
def forward(self, rgb, x, ws, **block_kwargs): |
|
ws = ws[:, -1:, :].repeat(1, 3, 1) |
|
|
|
if x.shape[-1] != self.input_resolution: |
|
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
|
|
x, rgb = self.block0(x, rgb, ws, **block_kwargs) |
|
x, rgb = self.block1(x, rgb, ws, **block_kwargs) |
|
return rgb |
|
|
|
|
|
|
|
|
|
|
|
class SuperresolutionHybrid4X(torch.nn.Module): |
|
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias, |
|
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None, |
|
**block_kwargs): |
|
super().__init__() |
|
assert img_resolution == 256 |
|
use_fp16 = sr_num_fp16_res > 0 |
|
self.sr_antialias = sr_antialias |
|
self.input_resolution = 128 |
|
self.block0 = SynthesisBlockNoUp(channels, 128, w_dim=512, resolution=128, |
|
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=256, |
|
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1])) |
|
|
|
def forward(self, rgb, x, ws, **block_kwargs): |
|
ws = ws[:, -1:, :].repeat(1, 3, 1) |
|
|
|
if x.shape[-1] < self.input_resolution: |
|
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
|
|
x, rgb = self.block0(x, rgb, ws, **block_kwargs) |
|
x, rgb = self.block1(x, rgb, ws, **block_kwargs) |
|
return rgb |
|
|
|
|
|
|
|
|
|
|
|
class SuperresolutionHybrid2X(torch.nn.Module): |
|
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias, |
|
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None, |
|
**block_kwargs): |
|
super().__init__() |
|
assert img_resolution == 128 |
|
|
|
use_fp16 = sr_num_fp16_res > 0 |
|
self.input_resolution = 64 |
|
self.sr_antialias = sr_antialias |
|
self.block0 = SynthesisBlockNoUp(channels, 128, w_dim=512, resolution=64, |
|
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=128, |
|
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1])) |
|
|
|
def forward(self, rgb, x, ws, **block_kwargs): |
|
ws = ws[:, -1:, :].repeat(1, 3, 1) |
|
|
|
if x.shape[-1] != self.input_resolution: |
|
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
|
|
x, rgb = self.block0(x, rgb, ws, **block_kwargs) |
|
x, rgb = self.block1(x, rgb, ws, **block_kwargs) |
|
return rgb |
|
|
|
|
|
|
|
|
|
|
|
class SuperresolutionHybridDeepfp32(torch.nn.Module): |
|
def __init__(self, channels, img_resolution, sr_num_fp16_res, |
|
num_fp16_res=4, conv_clamp=None, channel_base=None, channel_max=None, |
|
**block_kwargs): |
|
super().__init__() |
|
assert img_resolution == 256 |
|
use_fp16 = sr_num_fp16_res > 0 |
|
|
|
self.input_resolution = 128 |
|
self.block0 = SynthesisBlockNoUp(channels, 128, w_dim=512, resolution=128, |
|
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.block1 = SynthesisBlock(128, 64, w_dim=512, resolution=256, |
|
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1])) |
|
|
|
def forward(self, rgb, x, ws, **block_kwargs): |
|
ws = ws[:, -1:, :].repeat(1, 3, 1) |
|
|
|
if x.shape[-1] < self.input_resolution: |
|
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False) |
|
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False) |
|
|
|
x, rgb = self.block0(x, rgb, ws, **block_kwargs) |
|
x, rgb = self.block1(x, rgb, ws, **block_kwargs) |
|
return rgb |
|
|
|
|
|
|
|
|
|
class SynthesisBlockNoUp(torch.nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
w_dim, |
|
resolution, |
|
img_channels, |
|
is_last, |
|
architecture = 'skip', |
|
resample_filter = [1,3,3,1], |
|
conv_clamp = 256, |
|
use_fp16 = False, |
|
fp16_channels_last = False, |
|
fused_modconv_default = True, |
|
**layer_kwargs, |
|
): |
|
assert architecture in ['orig', 'skip', 'resnet'] |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.w_dim = w_dim |
|
self.resolution = resolution |
|
self.img_channels = img_channels |
|
self.is_last = is_last |
|
self.architecture = architecture |
|
self.use_fp16 = use_fp16 |
|
self.channels_last = (use_fp16 and fp16_channels_last) |
|
self.fused_modconv_default = fused_modconv_default |
|
self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) |
|
self.num_conv = 0 |
|
self.num_torgb = 0 |
|
|
|
if in_channels == 0: |
|
self.const = torch.nn.Parameter(torch.randn([out_channels, resolution, resolution])) |
|
|
|
if in_channels != 0: |
|
self.conv0 = SynthesisLayer(in_channels, out_channels, w_dim=w_dim, resolution=resolution, |
|
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) |
|
self.num_conv += 1 |
|
|
|
self.conv1 = SynthesisLayer(out_channels, out_channels, w_dim=w_dim, resolution=resolution, |
|
conv_clamp=conv_clamp, channels_last=self.channels_last, **layer_kwargs) |
|
self.num_conv += 1 |
|
|
|
if is_last or architecture == 'skip': |
|
self.torgb = ToRGBLayer(out_channels, img_channels, w_dim=w_dim, |
|
conv_clamp=conv_clamp, channels_last=self.channels_last) |
|
self.num_torgb += 1 |
|
|
|
if in_channels != 0 and architecture == 'resnet': |
|
self.skip = Conv2dLayer(in_channels, out_channels, kernel_size=1, bias=False, up=2, |
|
resample_filter=resample_filter, channels_last=self.channels_last) |
|
|
|
def forward(self, x, img, ws, force_fp32=False, fused_modconv=None, update_emas=False, **layer_kwargs): |
|
_ = update_emas |
|
misc.assert_shape(ws, [None, self.num_conv + self.num_torgb, self.w_dim]) |
|
w_iter = iter(ws.unbind(dim=1)) |
|
if ws.device.type != 'cuda': |
|
force_fp32 = True |
|
dtype = torch.float16 if self.use_fp16 and not force_fp32 else torch.float32 |
|
memory_format = torch.channels_last if self.channels_last and not force_fp32 else torch.contiguous_format |
|
if fused_modconv is None: |
|
fused_modconv = self.fused_modconv_default |
|
if fused_modconv == 'inference_only': |
|
fused_modconv = (not self.training) |
|
|
|
|
|
if self.in_channels == 0: |
|
x = self.const.to(dtype=dtype, memory_format=memory_format) |
|
x = x.unsqueeze(0).repeat([ws.shape[0], 1, 1, 1]) |
|
else: |
|
misc.assert_shape(x, [None, self.in_channels, self.resolution, self.resolution]) |
|
x = x.to(dtype=dtype, memory_format=memory_format) |
|
|
|
|
|
if self.in_channels == 0: |
|
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) |
|
elif self.architecture == 'resnet': |
|
y = self.skip(x, gain=np.sqrt(0.5)) |
|
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) |
|
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, gain=np.sqrt(0.5), **layer_kwargs) |
|
x = y.add_(x) |
|
else: |
|
x = self.conv0(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) |
|
x = self.conv1(x, next(w_iter), fused_modconv=fused_modconv, **layer_kwargs) |
|
|
|
|
|
|
|
|
|
|
|
if self.is_last or self.architecture == 'skip': |
|
y = self.torgb(x, next(w_iter), fused_modconv=fused_modconv) |
|
y = y.to(dtype=torch.float32, memory_format=torch.contiguous_format) |
|
img = img.add_(y) if img is not None else y |
|
|
|
assert x.dtype == dtype |
|
assert img is None or img.dtype == torch.float32 |
|
return x, img |
|
|
|
def extra_repr(self): |
|
return f'resolution={self.resolution:d}, architecture={self.architecture:s}' |
|
|
|
|
|
|
|
|
|
class ResBlock2d(nn.Module): |
|
""" |
|
Res block, preserve spatial resolution. |
|
""" |
|
|
|
def __init__(self, in_features, kernel_size, padding): |
|
super(ResBlock2d, self).__init__() |
|
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, |
|
padding=padding) |
|
self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, |
|
padding=padding) |
|
self.act = nn.ReLU(inplace=False) |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
out = self.act(out) |
|
out = self.conv2(out) |
|
out = self.act(out) |
|
out = out + x |
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LargeSynthesisBlock0(nn.Module): |
|
def __init__(self, channels, use_fp16, **block_kwargs): |
|
super().__init__() |
|
self.block = SynthesisBlock(channels, 256, w_dim=512, resolution=256, |
|
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.resblocks = nn.Sequential(*[ |
|
ResBlock2d(256, kernel_size=3, padding=1) for _ in range(hparams['resblocks_in_large_sr']) |
|
]) |
|
self.to_rgb = nn.Conv2d(256, 3, kernel_size=1) |
|
|
|
def forward(self, x, rgb, ws, **block_kwargs): |
|
x, rgb = self.block(x, rgb, ws, **block_kwargs) |
|
x = self.resblocks(x) |
|
rgb = rgb + self.to_rgb(x) |
|
return x, rgb |
|
|
|
class LargeSynthesisBlock1(nn.Module): |
|
def __init__(self, use_fp16, **block_kwargs): |
|
super().__init__() |
|
self.block = SynthesisBlock(256, 128, w_dim=512, resolution=512, |
|
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.resblocks = nn.Sequential(*[ |
|
ResBlock2d(128, kernel_size=3, padding=1) for _ in range(hparams['resblocks_in_large_sr']) |
|
]) |
|
self.to_rgb = nn.Conv2d(128, 3, kernel_size=1) |
|
|
|
def forward(self, x, rgb, ws, **block_kwargs): |
|
x, rgb = self.block(x, rgb, ws, **block_kwargs) |
|
x = self.resblocks(x) |
|
rgb = rgb + self.to_rgb(x) |
|
return x, rgb |
|
|
|
class SuperresolutionHybrid8XDC(torch.nn.Module): |
|
def __init__(self, channels, img_resolution, sr_num_fp16_res, sr_antialias, large_sr=False, **block_kwargs): |
|
super().__init__() |
|
assert img_resolution == 512 |
|
|
|
use_fp16 = sr_num_fp16_res > 0 |
|
self.input_resolution = 128 |
|
self.sr_antialias = sr_antialias |
|
if large_sr is True: |
|
self.block0 = LargeSynthesisBlock0(channels, use_fp16=sr_num_fp16_res > 0, **block_kwargs) |
|
self.block1 = LargeSynthesisBlock1(use_fp16=sr_num_fp16_res > 0, **block_kwargs) |
|
else: |
|
self.block0 = SynthesisBlock(channels, 256, w_dim=512, resolution=256, |
|
img_channels=3, is_last=False, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
self.block1 = SynthesisBlock(256, 128, w_dim=512, resolution=512, |
|
img_channels=3, is_last=True, use_fp16=use_fp16, conv_clamp=(256 if use_fp16 else None), **block_kwargs) |
|
|
|
def forward(self, rgb, x, ws, **block_kwargs): |
|
ws = ws[:, -1:, :].repeat(1, 3, 1) |
|
|
|
if x.shape[-1] != self.input_resolution: |
|
x = torch.nn.functional.interpolate(x, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
rgb = torch.nn.functional.interpolate(rgb, size=(self.input_resolution, self.input_resolution), |
|
mode='bilinear', align_corners=False, antialias=self.sr_antialias) |
|
|
|
x, rgb = self.block0(x, rgb, ws, **block_kwargs) |
|
x, rgb = self.block1(x, rgb, ws, **block_kwargs) |
|
return rgb |
|
|