ameerazam08's picture
Upload folder using huggingface_hub
e34aada verified
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""
import copy
import math
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from modules.eg3ds.volumetric_rendering.ray_marcher import MipRayMarcher2
from modules.eg3ds.volumetric_rendering import math_utils
from utils.commons.tensor_utils import convert_like
from utils.commons.hparams import hparams
import copy
def generate_planes():
"""
Defines planes by the three vectors that form the "axes" of the
plane. Should work with arbitrary number of planes and planes of
arbitrary orientation.
the acutally used axes is the inv_planes (transpose)
"""
return torch.tensor([[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], # xyz
[[1, 0, 0],
[0, 0, 1],
[0, 1, 0]], # xzy
[[0, 0, 1],
[1, 0, 0], # after transpose, is yzx
[0, 1, 0]]], dtype=torch.float32)
def project_onto_planes(planes, coordinates):
"""
Does a projection of a 3D point onto a batch of 2D planes,
returning 2D plane coordinates.
Takes plane axes of shape n_planes, 3, 3
# Takes coordinates of shape N, M, 3
# returns projections of shape N*n_planes, M, 2
"""
N, M, C = coordinates.shape
n_planes, _, _ = planes.shape
coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
projections = torch.bmm(coordinates, inv_planes) #
return projections
def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None):
assert padding_mode == 'zeros'
N, n_planes, C, H, W = plane_features.shape
_, M, _ = coordinates.shape
plane_features = plane_features.reshape(N*n_planes, C, H, W)
coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds
projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1)[..., :2]
output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
return output_features
def sample_from_trigrids(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None, triplane_depth=1):
assert padding_mode == 'zeros'
N, n_planes, CD, H, W = plane_features.shape
_, M, _ = coordinates.shape
C, D = CD // triplane_depth, triplane_depth
plane_features = plane_features.view(N*n_planes, C, D, H, W)
coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds
projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1).unsqueeze(2) # (N x n_planes) x 1 x 1 x M x 3
output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 4, 3, 2, 1).reshape(N, n_planes, M, C)
return output_features
def sample_from_3dgrid(grid, coordinates):
"""
Expects coordinates in shape (batch_size, num_points_per_batch, 3)
Expects grid in shape (1, channels, H, W, D)
(Also works if grid has batch size)
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
"""
batch_size, n_coords, n_dims = coordinates.shape
sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear', padding_mode='zeros', align_corners=False)
N, C, H, W, D = sampled_features.shape
sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C)
return sampled_features
class ImportanceRenderer(torch.nn.Module):
def __init__(self, hp=None):
super().__init__()
global hparams
self.hparams = copy.copy(hparams) if hp is None else copy.copy(hp)
hparams = self.hparams
self.ray_marcher = MipRayMarcher2()
self.plane_axes = generate_planes()
self.triplane_feature_type = hparams.get("triplane_feature_type", "triplane")
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options):
self.plane_axes = self.plane_axes.to(ray_origins.device)
if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto':
ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) # 根据ndc world bbox的大小(默认-1,1),自动计算near和far
is_ray_valid = ray_end > ray_start
if torch.any(is_ray_valid).item():
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
else: # 如果bbox没有被限定在-1,1的bbox里面,使用自行设定的near far
# Create stratified depth samples
ray_start, ray_end = rendering_options['ray_start'], rendering_options['ray_end']
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape
# Coarse Pass
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_coarse = out['rgb']
densities_coarse = out['sigma']
colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1])
densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1)
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights, N_importance)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3)
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_fine = out['rgb']
densities_fine = out['sigma']
colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1])
densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1)
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
depths_fine, colors_fine, densities_fine)
# Aggregate
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
return rgb_final, depth_final, weights.sum(2), is_ray_valid
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
hparams = self.hparams
if hparams['enable_rescale_plane_regulation'] and self.training:
target_size = random.randint(int(256 * hparams.get("min_rescale_factor", 0.5)), 256)
planes = rearrange(planes, "n k c h w -> n (k c) h w")
planes = F.interpolate(planes, (target_size, target_size), mode='bilinear', align_corners=False, antialias=False)
planes = rearrange(planes, "n (k c) h w -> n k c h w", k=3)
self.plane_axes = self.plane_axes.to(planes.device)
if self.triplane_feature_type in ["triplane"]:
sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
elif self.triplane_feature_type in ["trigrid", 'trigrid_v2']:
sampled_features = sample_from_trigrids(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'], triplane_depth=hparams.get("triplane_depth", 1))
elif self.triplane_feature_type == "3dgrid":
sampled_features = sample_from_3dgrid(planes, sample_coordinates)
out = decoder(sampled_features, sample_coordinates)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
return out
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2):
all_depths = torch.cat([depths1, depths2], dim = -2)
all_colors = torch.cat([colors1, colors2], dim = -2)
all_densities = torch.cat([densities1, densities2], dim = -2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = 1/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3)
depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None]
else:
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(batch_size, num_rays, N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
if isinstance(N_samples_, torch.Tensor):
N_samples_ = N_samples_.to(device=weights.device)
if isinstance(N_rays, torch.Tensor):
N_rays = N_rays.to(device=weights.device)
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples