# dataset-related raw_data_dir: data/raw/videos processed_data_dir: data/processed/videos binary_data_dir: data/binary/videos video_id: May # feature-related cond_type: idexp_lm3d_normalized smo_win_size: 5 cond_hid_dim: 32 cond_out_dim: 16 # generator_condition_on_pose: false # pose is camera extrinsic and intrinsic generator_condition_on_pose: true # pose is camera extrinsic and intrinsic gpc_reg_prob: 0.5 gpc_reg_fade_kimg: 1000 # network-related task_cls: tasks.eg3ds.eg3d_task.EG3DTask z_dim: 512 w_dim: 512 neural_rendering_resolution: 128 final_resolution: 512 base_channel: 32768 # Capacity multiplier max_channel: 512 # Max. feature maps mapping_network_depth: 2 # num of layers in mapping network num_fp16_layers_in_super_resolution: 4 num_fp16_layers_in_generator: 0 num_fp16_layers_in_discriminator: 4 # GAN-related blur_raw_target: true blur_init_sigma: 10 # blur_fade_kimg: 200 # Fade out the blur during the first N kimg. blur_fade_kimg: 20 # Fade out the blur during the first N kimg. # neural rendering-related num_samples_coarse: 48 # number of uniform samples to take per ray. num_samples_fine: 48 # number of importance samples to take per ray. ray_near: 2.25 ray_far: 4.05 box_warp: 1 # the side-length of the bounding box spanned by the tri-planes; box_warp=1 means [-0.5, -0.5, -0.5] -> [0.5, 0.5, 0.5]. # loss related group_size_for_mini_batch_std: 2 # 4 lambda_gradient_penalty: 5. # gradient penalty to discriminator lambda_G_supervise_adv: 0. lambda_G_supervise_mse_raw: 1.0 lambda_G_supervise_mse: 0. lambda_G_adversarial_adv: 0. lambda_density_reg: 0.25 # strength of density regularization for Generator density_reg_p_dist: 0.004 # distance at which to sample perturbed points for density regularization # trainer related seed: 9999 lr_g: 0.0025 lr_d: 0.002 optimizer_adam_beta1_g: 0. optimizer_adam_beta2_g: 0.99 optimizer_adam_beta1_d: 0. optimizer_adam_beta2_d: 0.99 reg_interval_g: 4 reg_interval_d: 16 batch_size: 4 ema_interval: 400 # bs * 10 / 32 kimg max_updates: 25000_000 # 25000 kimg num_workers: 4 work_dir: '' load_ckpt: '' tb_log_interval: 100 num_ckpt_keep: 1 val_check_interval: 2000 valid_infer_interval: 2000 num_sanity_val_steps: 1 num_valid_plots: 25 eval_max_batches: 100 # num_test_plots print_nan_grads: false resume_from_checkpoint: 0 # specify the step, 0 for latest amp: false valid_monitor_key: val_loss valid_monitor_mode: min save_best: true debug: false save_codes: - tasks - modules - egs accumulate_grad_batches: 1 clip_grad_norm: 0 #1 clip_grad_value: 0