import torch from torch import nn from modules.commons.conv import ConditionalConvBlocks from modules.commons.wavenet import WN class FlipLayer(nn.Module): def forward(self, x, *args, **kwargs): x = torch.flip(x, [1]) return x class CouplingLayer(nn.Module): def __init__(self, c_in, hidden_size, kernel_size, n_layers, p_dropout=0, c_in_g=0, nn_type='wn'): super().__init__() self.channels = c_in self.hidden_size = hidden_size self.kernel_size = kernel_size self.n_layers = n_layers self.c_half = c_in // 2 self.pre = nn.Conv1d(self.c_half, hidden_size, 1) if nn_type == 'wn': self.enc = WN(hidden_size, kernel_size, 1, n_layers, p_dropout=p_dropout, c_cond=c_in_g) elif nn_type == 'conv': self.enc = ConditionalConvBlocks( hidden_size, c_in_g, hidden_size, None, kernel_size, layers_in_block=1, is_BTC=False, num_layers=n_layers) self.post = nn.Conv1d(hidden_size, self.c_half, 1) def forward(self, x, nonpadding, cond=None, reverse=False): x0, x1 = x[:, :self.c_half], x[:, self.c_half:] x_ = self.pre(x0) * nonpadding x_ = self.enc(x_, nonpadding=nonpadding, cond=cond) m = self.post(x_) x1 = m + x1 if not reverse else x1 - m x = torch.cat([x0, x1], 1) return x * nonpadding class ResFlow(nn.Module): def __init__(self, c_in, hidden_size, kernel_size, n_flow_layers, n_flow_steps=4, c_cond=0, nn_type='wn'): super().__init__() self.flows = nn.ModuleList() for i in range(n_flow_steps): self.flows.append( CouplingLayer(c_in, hidden_size, kernel_size, n_flow_layers, c_in_g=c_cond, nn_type=nn_type)) self.flows.append(FlipLayer()) def forward(self, x, nonpadding, cond=None, reverse=False): for flow in (self.flows if not reverse else reversed(self.flows)): x = flow(x, nonpadding, cond=cond, reverse=reverse) return x