""" Lookup Free Quantization Proposed in https://arxiv.org/abs/2310.05737 basically a 2-level FSQ (Finite Scalar Quantization) with entropy loss https://arxiv.org/abs/2309.15505 """ from math import log2, ceil from collections import namedtuple import torch from torch import nn, Tensor, einsum import torch.nn.functional as F from torch.nn import Module from einops import rearrange, reduce, pack, unpack # constants # Return = namedtuple('Return', ['quantized', 'indices', 'entropy_aux_loss']) LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'batch_entropy', 'commitment']) # helper functions def exists(v): return v is not None def default(*args): for arg in args: if exists(arg): return arg() if callable(arg) else arg return None def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] # distance def euclidean_distance_squared(x, y): x2 = reduce(x ** 2, '... n d -> ... n', 'sum') y2 = reduce(y ** 2, 'n d -> n', 'sum') xy = einsum('... i d, j d -> ... i j', x, y) * -2 return rearrange(x2, '... i -> ... i 1') + y2 + xy # entropy def log(t, eps = 1e-20): return t.clamp(min = eps).log() def entropy(prob): return -prob * log(prob) # class class LFQ(Module): def __init__( self, *, dim = None, codebook_size = None, entropy_loss_weight = 0.1, commitment_loss_weight = 1., diversity_gamma = 2.5, straight_through_activation = nn.Identity(), num_codebooks = 1, keep_num_codebooks_dim = None, codebook_scale = 1. # for residual LFQ, codebook scaled down by 2x at each layer ): super().__init__() # some assert validations assert exists(dim) or exists(codebook_size), 'either dim or codebook_size must be specified for LFQ' assert not exists(codebook_size) or log2(codebook_size).is_integer(), f'your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})' codebook_size = default(codebook_size, lambda: 2 ** dim) codebook_dim = int(log2(codebook_size)) codebook_dims = codebook_dim * num_codebooks dim = default(dim, codebook_dims) self.project_in = nn.Linear(dim, codebook_dims) if dim != codebook_dims else nn.Identity() self.project_out = nn.Linear(codebook_dims, dim) if dim != codebook_dims else nn.Identity() self.dim = dim self.codebook_dim = codebook_dim self.num_codebooks = num_codebooks keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1) assert not (num_codebooks > 1 and not keep_num_codebooks_dim) self.keep_num_codebooks_dim = keep_num_codebooks_dim # straight through activation self.activation = straight_through_activation # entropy aux loss related weights self.diversity_gamma = diversity_gamma self.entropy_loss_weight = entropy_loss_weight # codebook scale self.codebook_scale = codebook_scale # commitment loss self.commitment_loss_weight = commitment_loss_weight # for no auxiliary loss, during inference self.register_buffer('mask', 2 ** torch.arange(codebook_dim - 1, -1, -1)) self.register_buffer('zero', torch.tensor(0.), persistent = False) # codes all_codes = torch.arange(codebook_size) bits = ((all_codes[..., None].int() & self.mask) != 0).float() codebook = self.bits_to_codes(bits) self.register_buffer('codebook', codebook, persistent = False) def bits_to_codes(self, bits): return bits * self.codebook_scale * 2 - self.codebook_scale @property def dtype(self): return self.codebook.dtype def indices_to_codes( self, indices, project_out = True ): is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim)) if not self.keep_num_codebooks_dim: indices = rearrange(indices, '... -> ... 1') # indices to codes, which are bits of either -1 or 1 bits = ((indices[..., None].int() & self.mask) != 0).to(self.dtype) codes = self.bits_to_codes(bits) codes = rearrange(codes, '... c d -> ... (c d)') # whether to project codes out to original dimensions # if the input feature dimensions were not log2(codebook size) if project_out: codes = self.project_out(codes) # rearrange codes back to original shape if is_img_or_video: codes = rearrange(codes, 'b ... d -> b d ...') return codes def forward( self, x, mask=None, inv_temperature = 1., return_loss_breakdown = False ): """ einstein notation b - batch n - sequence (or flattened spatial dimensions) d - feature dimension, which is also log2(codebook size) c - number of codebook dim """ is_img_or_video = x.ndim >= 4 # standardize image or video into (batch, seq, dimension) if is_img_or_video: x = rearrange(x, 'b d ... -> b ... d') x, ps = pack_one(x, 'b * d') assert x.shape[-1] == self.dim, f'expected dimension of {self.dim} but received {x.shape[-1]}' x = self.project_in(x) # split out number of codebooks x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks) # quantize by eq 3. original_input = x codebook_value = torch.ones_like(x) * self.codebook_scale quantized = torch.where(x > 0, codebook_value, -codebook_value) # use straight-through gradients with tanh (or custom activation fn) if training if self.training: x = self.activation(x) x = x - x.detach() + quantized else: x = quantized # calculate indices indices = reduce((x > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum') # entropy aux loss if self.training: distance = euclidean_distance_squared(original_input, self.codebook) prob = (-distance * inv_temperature).softmax(dim = -1) per_sample_entropy = entropy(prob).mean() avg_prob = reduce(prob, 'b n c d -> b c d', 'mean') codebook_entropy = entropy(avg_prob).mean() # 1. entropy will be nudged to be low for each code, to encourage the network to output confident predictions # 2. codebook entropy will be nudged to be high, to encourage all codes to be uniformly used within the batch entropy_aux_loss = per_sample_entropy - self.diversity_gamma * codebook_entropy else: # if not training, just return dummy 0 entropy_aux_loss = per_sample_entropy = codebook_entropy = self.zero # commit loss if self.training: commit_loss = F.mse_loss(original_input, quantized.detach()) else: commit_loss = self.zero # merge back codebook dim x = rearrange(x, 'b n c d -> b n (c d)') # project out to feature dimension if needed x = self.project_out(x) # reconstitute image or video dimensions if is_img_or_video: x = unpack_one(x, ps, 'b * d') x = rearrange(x, 'b ... d -> b d ...') indices = unpack_one(indices, ps, 'b * c') # whether to remove single codebook dim if not self.keep_num_codebooks_dim: indices = rearrange(indices, '... 1 -> ...') # complete aux loss aux_loss = entropy_aux_loss * self.entropy_loss_weight + commit_loss * self.commitment_loss_weight ret = x, aux_loss, indices if not return_loss_breakdown: return ret return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss) def get_codebook_entry(self, encoding_indices): return self.indices_to_codes(encoding_indices)