# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """Frechet Inception Distance (FID) from the paper "GANs trained by a two time-scale update rule converge to a local Nash equilibrium". Matches the original implementation by Heusel et al. at https://github.com/bioinf-jku/TTUR/blob/master/fid.py""" import numpy as np import scipy.linalg from . import metric_utils #---------------------------------------------------------------------------- def compute_fid(opts, max_real, num_gen): # Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz # detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl' detector_url = 'file:///home/tiger/nfs/myenv/cache/useful_ckpts/inception-2015-12-05.pkl' detector_kwargs = dict(return_features=True) # Return raw features before the softmax layer. mu_real, sigma_real = metric_utils.compute_feature_stats_for_dataset( opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, rel_lo=0, rel_hi=0, capture_mean_cov=True, max_items=max_real).get_mean_cov() mu_gen, sigma_gen = metric_utils.compute_feature_stats_for_generator( opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs, rel_lo=0, rel_hi=1, capture_mean_cov=True, max_items=num_gen).get_mean_cov() if opts.rank != 0: return float('nan') m = np.square(mu_gen - mu_real).sum() s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2)) return float(fid) #----------------------------------------------------------------------------