import os os.environ["OMP_NUM_THREADS"] = "1" import glob import cv2 import tqdm import numpy as np import PIL from utils.commons.tensor_utils import convert_to_np import torch import mediapipe as mp from utils.commons.multiprocess_utils import multiprocess_run_tqdm from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter from data_gen.utils.process_video.extract_segment_imgs import inpaint_torso_job, extract_background, save_rgb_image_to_path seg_model = MediapipeSegmenter() def extract_segment_job(img_name): try: img = cv2.imread(img_name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) segmap = seg_model._cal_seg_map(img) bg_img = extract_background([img], [segmap]) out_img_name = img_name.replace("/images_512/",f"/bg_img/").replace(".mp4", ".jpg") save_rgb_image_to_path(bg_img, out_img_name) com_img = img.copy() bg_part = segmap[0].astype(bool)[..., None].repeat(3,axis=-1) com_img[bg_part] = bg_img[bg_part] out_img_name = img_name.replace("/images_512/",f"/com_imgs/") save_rgb_image_to_path(com_img, out_img_name) for mode in ['head', 'torso', 'person', 'torso_with_bg', 'bg']: out_img, _ = seg_model._seg_out_img_with_segmap(img, segmap, mode=mode) out_img_name = img_name.replace("/images_512/",f"/{mode}_imgs/") out_img = cv2.cvtColor(out_img, cv2.COLOR_RGB2BGR) try: os.makedirs(os.path.dirname(out_img_name), exist_ok=True) except: pass cv2.imwrite(out_img_name, out_img) inpaint_torso_img, inpaint_torso_with_bg_img, _, _ = inpaint_torso_job(img, segmap) out_img_name = img_name.replace("/images_512/",f"/inpaint_torso_imgs/") save_rgb_image_to_path(inpaint_torso_img, out_img_name) inpaint_torso_with_bg_img[bg_part] = bg_img[bg_part] out_img_name = img_name.replace("/images_512/",f"/inpaint_torso_with_com_bg_imgs/") save_rgb_image_to_path(inpaint_torso_with_bg_img, out_img_name) return 0 except Exception as e: print(e) return 1 def out_exist_job(img_name): out_name1 = img_name.replace("/images_512/", "/head_imgs/") out_name2 = img_name.replace("/images_512/", "/com_imgs/") out_name3 = img_name.replace("/images_512/", "/inpaint_torso_with_com_bg_imgs/") if os.path.exists(out_name1) and os.path.exists(out_name2) and os.path.exists(out_name3): return None else: return img_name def get_todo_img_names(img_names): todo_img_names = [] for i, res in multiprocess_run_tqdm(out_exist_job, img_names, num_workers=64): if res is not None: todo_img_names.append(res) return todo_img_names if __name__ == '__main__': import argparse, glob, tqdm, random parser = argparse.ArgumentParser() parser.add_argument("--img_dir", default='./images_512') # parser.add_argument("--img_dir", default='/home/tiger/datasets/raw/FFHQ/images_512') parser.add_argument("--ds_name", default='FFHQ') parser.add_argument("--num_workers", default=1, type=int) parser.add_argument("--seed", default=0, type=int) parser.add_argument("--process_id", default=0, type=int) parser.add_argument("--total_process", default=1, type=int) parser.add_argument("--reset", action='store_true') args = parser.parse_args() img_dir = args.img_dir if args.ds_name == 'FFHQ_MV': img_name_pattern1 = os.path.join(img_dir, "ref_imgs/*.png") img_names1 = glob.glob(img_name_pattern1) img_name_pattern2 = os.path.join(img_dir, "mv_imgs/*.png") img_names2 = glob.glob(img_name_pattern2) img_names = img_names1 + img_names2 elif args.ds_name == 'FFHQ': img_name_pattern = os.path.join(img_dir, "*.png") img_names = glob.glob(img_name_pattern) img_names = sorted(img_names) random.seed(args.seed) random.shuffle(img_names) process_id = args.process_id total_process = args.total_process if total_process > 1: assert process_id <= total_process -1 num_samples_per_process = len(img_names) // total_process if process_id == total_process: img_names = img_names[process_id * num_samples_per_process : ] else: img_names = img_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process] if not args.reset: img_names = get_todo_img_names(img_names) print(f"todo images number: {len(img_names)}") for vid_name in multiprocess_run_tqdm(extract_segment_job ,img_names, desc=f"Root process {args.process_id}: extracting segment images", num_workers=args.num_workers): pass