"""This script is the test script for Deep3DFaceRecon_pytorch Pytorch Deep3D_Recon is 8x faster than TF-based, 16s/iter ==> 2s/iter """ import os # os.environ['PYTHONPATH'] = os.environ['PYTHONPATH'] + ":" + os.path.abspath("deep_3drecon") import torch import torch.nn as nn from .deep_3drecon_models.facerecon_model import FaceReconModel from .util.preprocess import align_img from PIL import Image import numpy as np from .util.load_mats import load_lm3d import torch import pickle as pkl from PIL import Image from utils.commons.tensor_utils import convert_to_tensor, convert_to_np with open("deep_3drecon/reconstructor_opt.pkl", "rb") as f: opt = pkl.load(f) class Reconstructor(nn.Module): def __init__(self): super().__init__() self.model = FaceReconModel(opt) self.model.setup(opt) self.model.device = 'cuda:0' self.model.parallelize() # self.model.to(self.model.device) self.model.eval() self.lm3d_std = load_lm3d(opt.bfm_folder) def preprocess_data(self, im, lm, lm3d_std): # to RGB H,W,_ = im.shape lm = lm.reshape([-1, 2]) lm[:, -1] = H - 1 - lm[:, -1] _, im, lm, _ = align_img(Image.fromarray(convert_to_np(im)), convert_to_np(lm), convert_to_np(lm3d_std)) im = torch.tensor(np.array(im)/255., dtype=torch.float32).permute(2, 0, 1).unsqueeze(0) lm = torch.tensor(lm).unsqueeze(0) return im, lm @torch.no_grad() def recon_coeff(self, batched_images, batched_lm5, return_image=True, batch_mode=True): bs = batched_images.shape[0] data_lst = [] for i in range(bs): img = batched_images[i] lm5 = batched_lm5[i] align_im, lm = self.preprocess_data(img, lm5, self.lm3d_std) data = { 'imgs': align_im, 'lms': lm } data_lst.append(data) if not batch_mode: coeff_lst = [] align_lst = [] for i in range(bs): data = data_lst self.model.set_input(data) # unpack data from data loader self.model.forward() pred_coeff = self.model.output_coeff.cpu().numpy() align_im = (align_im.squeeze().permute(1,2,0)*255).int().numpy().astype(np.uint8) coeff_lst.append(pred_coeff) align_lst.append(align_im) batch_coeff = np.concatenate(coeff_lst) batch_align_img = np.stack(align_lst) # [B, 257] else: imgs = torch.cat([d['imgs'] for d in data_lst]) lms = torch.cat([d['lms'] for d in data_lst]) data = { 'imgs': imgs, 'lms': lms } self.model.set_input(data) # unpack data from data loader self.model.forward() batch_coeff = self.model.output_coeff.cpu().numpy() batch_align_img = (imgs.permute(0,2,3,1)*255).int().numpy().astype(np.uint8) return batch_coeff, batch_align_img # todo: batch-wise recon! def forward(self, batched_images, batched_lm5, return_image=True): return self.recon_coeff(batched_images, batched_lm5, return_image)