import torch from torch import nn from typing import Optional from modules.img2plane.deeplabv3.encoders import get_encoder from modules.img2plane.deeplabv3.base import initialization as init from .my_decoder import DeepLabV3Decoder class DeepLabV3(nn.Module): """DeepLabV3_ implementation from "Rethinking Atrous Convolution for Semantic Image Segmentation" Args: encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) to extract features of different spatial resolution encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on). Default is 5 encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and other pretrained weights (see table with available weights for each encoder_name) decoder_channels: A number of convolution filters in ASPP module. Default is 256 in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, **callable** and **None**. Default is **None** upsampling: Final upsampling factor. Default is 8 to preserve input-output spatial shape identity aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes - pooling (str): One of "max", "avg". Default is "avg" - dropout (float): Dropout factor in [0, 1) - activation (str): An activation function to apply "sigmoid"/"softmax" (could be **None** to return logits) Returns: ``torch.nn.Module``: **DeepLabV3** .. _DeeplabV3: https://arxiv.org/abs/1706.05587 """ def initialize(self): init.initialize_decoder(self.decoder) def __init__( self, encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", decoder_channels: int = 256, in_channels: int = 5, # 3 for rgb, and 2 for pixel coordinates ): super().__init__() self.encoder = get_encoder( encoder_name, in_channels=in_channels, depth=encoder_depth, weights=encoder_weights, output_stride=8, ) self.decoder = DeepLabV3Decoder( in_channels=self.encoder.out_channels[-1], out_channels=decoder_channels, ) def check_input_shape(self, x): h, w = x.shape[-2:] output_stride = self.encoder.output_stride if h % output_stride != 0 or w % output_stride != 0: new_h = (h // output_stride + 1) * output_stride if h % output_stride != 0 else h new_w = (w // output_stride + 1) * output_stride if w % output_stride != 0 else w raise RuntimeError( f"Wrong input shape height={h}, width={w}. Expected image height and width " f"divisible by {output_stride}. Consider pad your images to shape ({new_h}, {new_w})." ) def forward(self, x): """Sequentially pass `x` trough model`s encoder, decoder and heads""" self.check_input_shape(x) features = self.encoder(x) decoder_output = self.decoder(*features) return decoder_output @torch.no_grad() def predict(self, x): """Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.no_grad()` Args: x: 4D torch tensor with shape (batch_size, channels, height, width) Return: prediction: 4D torch tensor with shape (batch_size, classes, height, width) """ if self.training: self.eval() x = self.forward(x) return x