"""This script defines the parametric 3d face model for Deep3DFaceRecon_pytorch """ import numpy as np import torch import torch.nn.functional as F from scipy.io import loadmat from deep_3drecon.util.load_mats import transferBFM09 import os # from utils.commons.tensor_utils import convert_like def perspective_projection(focal, center): # return p.T (N, 3) @ (3, 3) return np.array([ focal, 0, center, 0, focal, center, 0, 0, 1 ]).reshape([3, 3]).astype(np.float32).transpose() # 注意这里的transpose! class SH: def __init__(self): self.a = [np.pi, 2 * np.pi / np.sqrt(3.), 2 * np.pi / np.sqrt(8.)] self.c = [1/np.sqrt(4 * np.pi), np.sqrt(3.) / np.sqrt(4 * np.pi), 3 * np.sqrt(5.) / np.sqrt(12 * np.pi)] class ParametricFaceModel: def __init__(self, bfm_folder='./BFM', recenter=True, camera_distance=10., init_lit=np.array([ 0.8, 0, 0, 0, 0, 0, 0, 0, 0 ]), focal=1015., center=112., is_train=True, default_name='BFM_model_front.mat', keypoint_mode='mediapipe'): if not os.path.isfile(os.path.join(bfm_folder, default_name)): transferBFM09(bfm_folder) model = loadmat(os.path.join(bfm_folder, default_name)) # mean face shape. [3*N,1] self.mean_shape = model['meanshape'].astype(np.float32) # identity basis. [3*N,80] self.id_base = model['idBase'].astype(np.float32) # expression basis. [3*N,64] self.exp_base = model['exBase'].astype(np.float32) # mean face texture. [3*N,1] (0-255) self.mean_tex = model['meantex'].astype(np.float32) # texture basis. [3*N,80] self.tex_base = model['texBase'].astype(np.float32) # face indices for each vertex that lies in. starts from 0. [N,8] self.point_buf = model['point_buf'].astype(np.int64) - 1 # vertex indices for each face. starts from 0. [F,3] self.face_buf = model['tri'].astype(np.int64) - 1 # vertex indices for 68 landmarks. starts from 0. [68,1] if keypoint_mode == 'mediapipe': self.keypoints = np.load("deep_3drecon/BFM/index_mp468_from_mesh35709.npy").astype(np.int64) unmatch_mask = self.keypoints < 0 self.keypoints[unmatch_mask] = 0 else: self.keypoints = np.squeeze(model['keypoints']).astype(np.int64) - 1 if is_train: # vertex indices for small face region to compute photometric error. starts from 0. self.front_mask = np.squeeze(model['frontmask2_idx']).astype(np.int64) - 1 # vertex indices for each face from small face region. starts from 0. [f,3] self.front_face_buf = model['tri_mask2'].astype(np.int64) - 1 # vertex indices for pre-defined skin region to compute reflectance loss self.skin_mask = np.squeeze(model['skinmask']) if recenter: mean_shape = self.mean_shape.reshape([-1, 3]) mean_shape = mean_shape - np.mean(mean_shape, axis=0, keepdims=True) self.mean_shape = mean_shape.reshape([-1, 1]) self.key_mean_shape = self.mean_shape.reshape([-1, 3])[self.keypoints, :].reshape([-1, 3]) self.key_id_base = self.id_base.reshape([-1, 3,80])[self.keypoints, :].reshape([-1, 80]) self.key_exp_base = self.exp_base.reshape([-1, 3, 64])[self.keypoints, :].reshape([-1, 64]) self.focal = focal self.center = center self.persc_proj = perspective_projection(focal, center) self.device = 'cpu' self.camera_distance = camera_distance self.SH = SH() self.init_lit = init_lit.reshape([1, 1, -1]).astype(np.float32) self.initialized = False def to(self, device): self.device = device for key, value in self.__dict__.items(): if type(value).__module__ == np.__name__: setattr(self, key, torch.tensor(value).to(device)) self.initialized = True return self def compute_shape(self, id_coeff, exp_coeff): """ Return: face_shape -- torch.tensor, size (B, N, 3) Parameters: id_coeff -- torch.tensor, size (B, 80), identity coeffs exp_coeff -- torch.tensor, size (B, 64), expression coeffs """ batch_size = id_coeff.shape[0] id_part = torch.einsum('ij,aj->ai', self.id_base, id_coeff) exp_part = torch.einsum('ij,aj->ai', self.exp_base, exp_coeff) face_shape = id_part + exp_part + self.mean_shape.reshape([1, -1]) return face_shape.reshape([batch_size, -1, 3]) def compute_key_shape(self, id_coeff, exp_coeff): """ Return: face_shape -- torch.tensor, size (B, N, 3) Parameters: id_coeff -- torch.tensor, size (B, 80), identity coeffs exp_coeff -- torch.tensor, size (B, 64), expression coeffs """ batch_size = id_coeff.shape[0] id_part = torch.einsum('ij,aj->ai', self.key_id_base, id_coeff) exp_part = torch.einsum('ij,aj->ai', self.key_exp_base, exp_coeff) face_shape = id_part + exp_part + self.key_mean_shape.reshape([1, -1]) return face_shape.reshape([batch_size, -1, 3]) def compute_texture(self, tex_coeff, normalize=True): """ Return: face_texture -- torch.tensor, size (B, N, 3), in RGB order, range (0, 1.) Parameters: tex_coeff -- torch.tensor, size (B, 80) """ batch_size = tex_coeff.shape[0] face_texture = torch.einsum('ij,aj->ai', self.tex_base, tex_coeff) + self.mean_tex if normalize: face_texture = face_texture / 255. return face_texture.reshape([batch_size, -1, 3]) def compute_norm(self, face_shape): """ Return: vertex_norm -- torch.tensor, size (B, N, 3) Parameters: face_shape -- torch.tensor, size (B, N, 3) """ v1 = face_shape[:, self.face_buf[:, 0]] v2 = face_shape[:, self.face_buf[:, 1]] v3 = face_shape[:, self.face_buf[:, 2]] e1 = v1 - v2 e2 = v2 - v3 face_norm = torch.cross(e1, e2, dim=-1) face_norm = F.normalize(face_norm, dim=-1, p=2) face_norm = torch.cat([face_norm, torch.zeros(face_norm.shape[0], 1, 3).to(self.device)], dim=1) vertex_norm = torch.sum(face_norm[:, self.point_buf], dim=2) vertex_norm = F.normalize(vertex_norm, dim=-1, p=2) return vertex_norm def compute_color(self, face_texture, face_norm, gamma): """ Return: face_color -- torch.tensor, size (B, N, 3), range (0, 1.) Parameters: face_texture -- torch.tensor, size (B, N, 3), from texture model, range (0, 1.) face_norm -- torch.tensor, size (B, N, 3), rotated face normal gamma -- torch.tensor, size (B, 27), SH coeffs """ batch_size = gamma.shape[0] v_num = face_texture.shape[1] a, c = self.SH.a, self.SH.c gamma = gamma.reshape([batch_size, 3, 9]) gamma = gamma + self.init_lit gamma = gamma.permute(0, 2, 1) Y = torch.cat([ a[0] * c[0] * torch.ones_like(face_norm[..., :1]).to(self.device), -a[1] * c[1] * face_norm[..., 1:2], a[1] * c[1] * face_norm[..., 2:], -a[1] * c[1] * face_norm[..., :1], a[2] * c[2] * face_norm[..., :1] * face_norm[..., 1:2], -a[2] * c[2] * face_norm[..., 1:2] * face_norm[..., 2:], 0.5 * a[2] * c[2] / np.sqrt(3.) * (3 * face_norm[..., 2:] ** 2 - 1), -a[2] * c[2] * face_norm[..., :1] * face_norm[..., 2:], 0.5 * a[2] * c[2] * (face_norm[..., :1] ** 2 - face_norm[..., 1:2] ** 2) ], dim=-1) r = Y @ gamma[..., :1] g = Y @ gamma[..., 1:2] b = Y @ gamma[..., 2:] face_color = torch.cat([r, g, b], dim=-1) * face_texture return face_color @staticmethod def compute_rotation(angles, device='cpu'): """ Return: rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat Parameters: angles -- torch.tensor, size (B, 3), radian """ batch_size = angles.shape[0] angles = angles.to(device) ones = torch.ones([batch_size, 1]).to(device) zeros = torch.zeros([batch_size, 1]).to(device) x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:], rot_x = torch.cat([ ones, zeros, zeros, zeros, torch.cos(x), -torch.sin(x), zeros, torch.sin(x), torch.cos(x) ], dim=1).reshape([batch_size, 3, 3]) rot_y = torch.cat([ torch.cos(y), zeros, torch.sin(y), zeros, ones, zeros, -torch.sin(y), zeros, torch.cos(y) ], dim=1).reshape([batch_size, 3, 3]) rot_z = torch.cat([ torch.cos(z), -torch.sin(z), zeros, torch.sin(z), torch.cos(z), zeros, zeros, zeros, ones ], dim=1).reshape([batch_size, 3, 3]) rot = rot_z @ rot_y @ rot_x return rot.permute(0, 2, 1) def to_camera(self, face_shape): face_shape[..., -1] = self.camera_distance - face_shape[..., -1] # reverse the depth axis, add a fixed offset of length return face_shape def to_image(self, face_shape): """ Return: face_proj -- torch.tensor, size (B, N, 2), y direction is opposite to v direction Parameters: face_shape -- torch.tensor, size (B, N, 3) """ # to image_plane face_proj = face_shape @ self.persc_proj face_proj = face_proj[..., :2] / face_proj[..., 2:] return face_proj def transform(self, face_shape, rot, trans): """ Return: face_shape -- torch.tensor, size (B, N, 3) pts @ rot + trans Parameters: face_shape -- torch.tensor, si≥ze (B, N, 3) rot -- torch.tensor, size (B, 3, 3) trans -- torch.tensor, size (B, 3) """ return face_shape @ rot + trans.unsqueeze(1) def get_landmarks(self, face_proj): """ Return: face_lms -- torch.tensor, size (B, 68, 2) Parameters: face_proj -- torch.tensor, size (B, N, 2) """ return face_proj[:, self.keypoints] def split_coeff(self, coeffs): """ Return: coeffs_dict -- a dict of torch.tensors Parameters: coeffs -- torch.tensor, size (B, 256) """ id_coeffs = coeffs[:, :80] exp_coeffs = coeffs[:, 80: 144] tex_coeffs = coeffs[:, 144: 224] angles = coeffs[:, 224: 227] gammas = coeffs[:, 227: 254] translations = coeffs[:, 254:] return { 'id': id_coeffs, 'exp': exp_coeffs, 'tex': tex_coeffs, 'angle': angles, 'gamma': gammas, 'trans': translations } def compute_for_render(self, coeffs): """ Return: face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate face_color -- torch.tensor, size (B, N, 3), in RGB order landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction Parameters: coeffs -- torch.tensor, size (B, 257) """ coef_dict = self.split_coeff(coeffs) face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) rotation = self.compute_rotation(coef_dict['angle'], device=self.device) face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) face_vertex = self.to_camera(face_shape_transformed) face_proj = self.to_image(face_vertex) landmark = self.get_landmarks(face_proj) face_texture = self.compute_texture(coef_dict['tex']) face_norm = self.compute_norm(face_shape) face_norm_roted = face_norm @ rotation face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) return face_vertex, face_texture, face_color, landmark def compute_face_vertex(self, id, exp, angle, trans): """ Return: face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate face_color -- torch.tensor, size (B, N, 3), in RGB order landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction Parameters: coeffs -- torch.tensor, size (B, 257) """ if not self.initialized: self.to(id.device) face_shape = self.compute_shape(id, exp) rotation = self.compute_rotation(angle, device=self.device) face_shape_transformed = self.transform(face_shape, rotation, trans) face_vertex = self.to_camera(face_shape_transformed) return face_vertex def compute_for_landmark_fit(self, id, exp, angles, trans, ret=None): """ Return: face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate face_color -- torch.tensor, size (B, N, 3), in RGB order landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction Parameters: coeffs -- torch.tensor, size (B, 257) """ face_shape = self.compute_key_shape(id, exp) rotation = self.compute_rotation(angles, device=self.device) face_shape_transformed = self.transform(face_shape, rotation, trans) face_vertex = self.to_camera(face_shape_transformed) face_proj = self.to_image(face_vertex) landmark = face_proj return landmark def compute_for_landmark_fit_nerf(self, id, exp, angles, trans, ret=None): """ Return: face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate face_color -- torch.tensor, size (B, N, 3), in RGB order landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction Parameters: coeffs -- torch.tensor, size (B, 257) """ face_shape = self.compute_key_shape(id, exp) rotation = self.compute_rotation(angles, device=self.device) face_shape_transformed = self.transform(face_shape, rotation, trans) face_vertex = face_shape_transformed # no to_camera face_proj = self.to_image(face_vertex) landmark = face_proj return landmark # def compute_for_landmark_fit(self, id, exp, angles, trans, ret={}): # """ # Return: # face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate # face_color -- torch.tensor, size (B, N, 3), in RGB order # landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction # Parameters: # coeffs -- torch.tensor, size (B, 257) # """ # face_shape = self.compute_shape(id, exp) # rotation = self.compute_rotation(angles) # face_shape_transformed = self.transform(face_shape, rotation, trans) # face_vertex = self.to_camera(face_shape_transformed) # face_proj = self.to_image(face_vertex) # landmark = self.get_landmarks(face_proj) # return landmark def compute_for_render_fit(self, id, exp, angles, trans, tex, gamma): """ Return: face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate face_color -- torch.tensor, size (B, N, 3), in RGB order landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction Parameters: coeffs -- torch.tensor, size (B, 257) """ face_shape = self.compute_shape(id, exp) rotation = self.compute_rotation(angles, device=self.device) face_shape_transformed = self.transform(face_shape, rotation, trans) face_vertex = self.to_camera(face_shape_transformed) face_proj = self.to_image(face_vertex) landmark = self.get_landmarks(face_proj) face_texture = self.compute_texture(tex) face_norm = self.compute_norm(face_shape) face_norm_roted = face_norm @ rotation face_color = self.compute_color(face_texture, face_norm_roted, gamma) return face_color, face_vertex, landmark