"""This script contains the image preprocessing code for Deep3DFaceRecon_pytorch """ import numpy as np from scipy.io import loadmat from PIL import Image import cv2 import os # from skimage import transform as trans import torch import warnings warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) warnings.filterwarnings("ignore", category=FutureWarning) # calculating least square problem for image alignment def POS(xp, x): npts = xp.shape[1] A = np.zeros([2*npts, 8]) A[0:2*npts-1:2, 0:3] = x.transpose() A[0:2*npts-1:2, 3] = 1 A[1:2*npts:2, 4:7] = x.transpose() A[1:2*npts:2, 7] = 1 b = np.reshape(xp.transpose(), [2*npts, 1]) k, _, _, _ = np.linalg.lstsq(A, b) R1 = k[0:3] R2 = k[4:7] sTx = k[3] sTy = k[7] s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2 t = np.stack([sTx, sTy], axis=0) return t, s # bounding box for 68 landmark detection def BBRegression(points, params): w1 = params['W1'] b1 = params['B1'] w2 = params['W2'] b2 = params['B2'] data = points.copy() data = data.reshape([5, 2]) data_mean = np.mean(data, axis=0) x_mean = data_mean[0] y_mean = data_mean[1] data[:, 0] = data[:, 0] - x_mean data[:, 1] = data[:, 1] - y_mean rms = np.sqrt(np.sum(data ** 2)/5) data = data / rms data = data.reshape([1, 10]) data = np.transpose(data) inputs = np.matmul(w1, data) + b1 inputs = 2 / (1 + np.exp(-2 * inputs)) - 1 inputs = np.matmul(w2, inputs) + b2 inputs = np.transpose(inputs) x = inputs[:, 0] * rms + x_mean y = inputs[:, 1] * rms + y_mean w = 224/inputs[:, 2] * rms rects = [x, y, w, w] return np.array(rects).reshape([4]) # utils for landmark detection def img_padding(img, box): success = True bbox = box.copy() res = np.zeros([2*img.shape[0], 2*img.shape[1], 3]) res[img.shape[0] // 2: img.shape[0] + img.shape[0] // 2, img.shape[1] // 2: img.shape[1] + img.shape[1]//2] = img bbox[0] = bbox[0] + img.shape[1] // 2 bbox[1] = bbox[1] + img.shape[0] // 2 if bbox[0] < 0 or bbox[1] < 0: success = False return res, bbox, success # utils for landmark detection def crop(img, bbox): padded_img, padded_bbox, flag = img_padding(img, bbox) if flag: crop_img = padded_img[padded_bbox[1]: padded_bbox[1] + padded_bbox[3], padded_bbox[0]: padded_bbox[0] + padded_bbox[2]] crop_img = cv2.resize(crop_img.astype(np.uint8), (224, 224), interpolation=cv2.INTER_CUBIC) scale = 224 / padded_bbox[3] return crop_img, scale else: return padded_img, 0 # utils for landmark detection def scale_trans(img, lm, t, s): imgw = img.shape[1] imgh = img.shape[0] M_s = np.array([[1, 0, -t[0] + imgw//2 + 0.5], [0, 1, -imgh//2 + t[1]]], dtype=np.float32) img = cv2.warpAffine(img, M_s, (imgw, imgh)) w = int(imgw / s * 100) h = int(imgh / s * 100) img = cv2.resize(img, (w, h)) lm = np.stack([lm[:, 0] - t[0] + imgw // 2, lm[:, 1] - t[1] + imgh // 2], axis=1) / s * 100 left = w//2 - 112 up = h//2 - 112 bbox = [left, up, 224, 224] cropped_img, scale2 = crop(img, bbox) assert(scale2!=0) t1 = np.array([bbox[0], bbox[1]]) # back to raw img s * crop + s * t1 + t2 t1 = np.array([w//2 - 112, h//2 - 112]) scale = s / 100 t2 = np.array([t[0] - imgw/2, t[1] - imgh / 2]) inv = (scale/scale2, scale * t1 + t2.reshape([2])) return cropped_img, inv # utils for landmark detection def align_for_lm(img, five_points): five_points = np.array(five_points).reshape([1, 10]) params = loadmat('util/BBRegressorParam_r.mat') bbox = BBRegression(five_points, params) assert(bbox[2] != 0) bbox = np.round(bbox).astype(np.int32) crop_img, scale = crop(img, bbox) return crop_img, scale, bbox # resize and crop images for face reconstruction def resize_n_crop_img(img, lm, t, s, target_size=224., mask=None): w0, h0 = img.size w = (w0*s).astype(np.int32) h = (h0*s).astype(np.int32) left = (w/2 - target_size/2 + float((t[0] - w0/2)*s)).astype(np.int32) right = left + target_size up = (h/2 - target_size/2 + float((h0/2 - t[1])*s)).astype(np.int32) below = up + target_size img = img.resize((w, h), resample=Image.BICUBIC) img = img.crop((left, up, right, below)) if mask is not None: mask = mask.resize((w, h), resample=Image.BICUBIC) mask = mask.crop((left, up, right, below)) lm = np.stack([lm[:, 0] - t[0] + w0/2, lm[:, 1] - t[1] + h0/2], axis=1)*s lm = lm - np.reshape( np.array([(w/2 - target_size/2), (h/2-target_size/2)]), [1, 2]) return img, lm, mask # utils for face reconstruction def extract_5p(lm): lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 lm5p = np.stack([lm[lm_idx[0], :], np.mean(lm[lm_idx[[1, 2]], :], 0), np.mean( lm[lm_idx[[3, 4]], :], 0), lm[lm_idx[5], :], lm[lm_idx[6], :]], axis=0) lm5p = lm5p[[1, 2, 0, 3, 4], :] return lm5p # utils for face reconstruction def align_img(img, lm, lm3D, mask=None, target_size=224., rescale_factor=102.): """ Return: transparams --numpy.array (raw_W, raw_H, scale, tx, ty) img_new --PIL.Image (target_size, target_size, 3) lm_new --numpy.array (68, 2), y direction is opposite to v direction mask_new --PIL.Image (target_size, target_size) Parameters: img --PIL.Image (raw_H, raw_W, 3) lm --numpy.array (68, 2), y direction is opposite to v direction lm3D --numpy.array (5, 3) mask --PIL.Image (raw_H, raw_W, 3) """ w0, h0 = img.size if lm.shape[0] != 5: lm5p = extract_5p(lm) else: lm5p = lm # calculate translation and scale factors using 5 facial landmarks and standard landmarks of a 3D face t, s = POS(lm5p.transpose(), lm3D.transpose()) s = rescale_factor/s # processing the image img_new, lm_new, mask_new = resize_n_crop_img(img, lm, t, s, target_size=target_size, mask=mask) t = t.reshape([2,]) trans_params = np.array([w0, h0, s, t[0], t[1]]) return trans_params, img_new, lm_new, mask_new # utils for face recognition model def estimate_norm(lm_68p, H): # from https://github.com/deepinsight/insightface/blob/c61d3cd208a603dfa4a338bd743b320ce3e94730/recognition/common/face_align.py#L68 """ Return: trans_m --numpy.array (2, 3) Parameters: lm --numpy.array (68, 2), y direction is opposite to v direction H --int/float , image height """ lm = extract_5p(lm_68p) lm[:, -1] = H - 1 - lm[:, -1] tform = trans.SimilarityTransform() src = np.array( [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], [41.5493, 92.3655], [70.7299, 92.2041]], dtype=np.float32) tform.estimate(lm, src) M = tform.params if np.linalg.det(M) == 0: M = np.eye(3) return M[0:2, :] def estimate_norm_torch(lm_68p, H): lm_68p_ = lm_68p.detach().cpu().numpy() M = [] for i in range(lm_68p_.shape[0]): M.append(estimate_norm(lm_68p_[i], H)) M = torch.tensor(np.array(M), dtype=torch.float32).to(lm_68p.device) return M