"""This script is to load 3D face model for Deep3DFaceRecon_pytorch """ import numpy as np from PIL import Image from scipy.io import loadmat, savemat from array import array import os.path as osp # load expression basis def LoadExpBasis(bfm_folder='BFM'): n_vertex = 53215 Expbin = open(osp.join(bfm_folder, 'Exp_Pca.bin'), 'rb') exp_dim = array('i') exp_dim.fromfile(Expbin, 1) expMU = array('f') expPC = array('f') expMU.fromfile(Expbin, 3*n_vertex) expPC.fromfile(Expbin, 3*exp_dim[0]*n_vertex) Expbin.close() expPC = np.array(expPC) expPC = np.reshape(expPC, [exp_dim[0], -1]) expPC = np.transpose(expPC) expEV = np.loadtxt(osp.join(bfm_folder, 'std_exp.txt')) return expPC, expEV # transfer original BFM09 to our face model def transferBFM09(bfm_folder='BFM'): print('Transfer BFM09 to BFM_model_front......') original_BFM = loadmat(osp.join(bfm_folder, '01_MorphableModel.mat')) shapePC = original_BFM['shapePC'] # shape basis shapeEV = original_BFM['shapeEV'] # corresponding eigen value shapeMU = original_BFM['shapeMU'] # mean face texPC = original_BFM['texPC'] # texture basis texEV = original_BFM['texEV'] # eigen value texMU = original_BFM['texMU'] # mean texture expPC, expEV = LoadExpBasis(bfm_folder) # transfer BFM09 to our face model idBase = shapePC*np.reshape(shapeEV, [-1, 199]) idBase = idBase/1e5 # unify the scale to decimeter idBase = idBase[:, :80] # use only first 80 basis exBase = expPC*np.reshape(expEV, [-1, 79]) exBase = exBase/1e5 # unify the scale to decimeter exBase = exBase[:, :64] # use only first 64 basis texBase = texPC*np.reshape(texEV, [-1, 199]) texBase = texBase[:, :80] # use only first 80 basis # our face model is cropped along face landmarks and contains only 35709 vertex. # original BFM09 contains 53490 vertex, and expression basis provided by Guo et al. contains 53215 vertex. # thus we select corresponding vertex to get our face model. index_exp = loadmat(osp.join(bfm_folder, 'BFM_front_idx.mat')) index_exp = index_exp['idx'].astype(np.int32) - 1 # starts from 0 (to 53215) index_shape = loadmat(osp.join(bfm_folder, 'BFM_exp_idx.mat')) index_shape = index_shape['trimIndex'].astype( np.int32) - 1 # starts from 0 (to 53490) index_shape = index_shape[index_exp] idBase = np.reshape(idBase, [-1, 3, 80]) idBase = idBase[index_shape, :, :] idBase = np.reshape(idBase, [-1, 80]) texBase = np.reshape(texBase, [-1, 3, 80]) texBase = texBase[index_shape, :, :] texBase = np.reshape(texBase, [-1, 80]) exBase = np.reshape(exBase, [-1, 3, 64]) exBase = exBase[index_exp, :, :] exBase = np.reshape(exBase, [-1, 64]) meanshape = np.reshape(shapeMU, [-1, 3])/1e5 meanshape = meanshape[index_shape, :] meanshape = np.reshape(meanshape, [1, -1]) meantex = np.reshape(texMU, [-1, 3]) meantex = meantex[index_shape, :] meantex = np.reshape(meantex, [1, -1]) # other info contains triangles, region used for computing photometric loss, # region used for skin texture regularization, and 68 landmarks index etc. other_info = loadmat(osp.join(bfm_folder, 'facemodel_info.mat')) frontmask2_idx = other_info['frontmask2_idx'] skinmask = other_info['skinmask'] keypoints = other_info['keypoints'] point_buf = other_info['point_buf'] tri = other_info['tri'] tri_mask2 = other_info['tri_mask2'] # save our face model savemat(osp.join(bfm_folder, 'BFM_model_front.mat'), {'meanshape': meanshape, 'meantex': meantex, 'idBase': idBase, 'exBase': exBase, 'texBase': texBase, 'tri': tri, 'point_buf': point_buf, 'tri_mask2': tri_mask2, 'keypoints': keypoints, 'frontmask2_idx': frontmask2_idx, 'skinmask': skinmask}) # load landmarks for standard face, which is used for image preprocessing def load_lm3d(bfm_folder): Lm3D = loadmat(osp.join(bfm_folder, 'similarity_Lm3D_all.mat')) Lm3D = Lm3D['lm'] # calculate 5 facial landmarks using 68 landmarks lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 Lm3D = np.stack([Lm3D[lm_idx[0], :], np.mean(Lm3D[lm_idx[[1, 2]], :], 0), np.mean( Lm3D[lm_idx[[3, 4]], :], 0), Lm3D[lm_idx[5], :], Lm3D[lm_idx[6], :]], axis=0) Lm3D = Lm3D[[1, 2, 0, 3, 4], :] return Lm3D if __name__ == '__main__': transferBFM09(bfm_folder='deep_3drecon/BFM')