# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """Equivariance metrics (EQ-T, EQ-T_frac, and EQ-R) from the paper "Alias-Free Generative Adversarial Networks".""" import copy import numpy as np import torch import torch.fft from modules.eg3ds.torch_utils.ops import upfirdn2d from . import metric_utils #---------------------------------------------------------------------------- # Utilities. def sinc(x): y = (x * np.pi).abs() z = torch.sin(y) / y.clamp(1e-30, float('inf')) return torch.where(y < 1e-30, torch.ones_like(x), z) def lanczos_window(x, a): x = x.abs() / a return torch.where(x < 1, sinc(x), torch.zeros_like(x)) def rotation_matrix(angle): angle = torch.as_tensor(angle).to(torch.float32) mat = torch.eye(3, device=angle.device) mat[0, 0] = angle.cos() mat[0, 1] = angle.sin() mat[1, 0] = -angle.sin() mat[1, 1] = angle.cos() return mat #---------------------------------------------------------------------------- # Apply integer translation to a batch of 2D images. Corresponds to the # operator T_x in Appendix E.1. def apply_integer_translation(x, tx, ty): _N, _C, H, W = x.shape tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device) ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device) ix = tx.round().to(torch.int64) iy = ty.round().to(torch.int64) z = torch.zeros_like(x) m = torch.zeros_like(x) if abs(ix) < W and abs(iy) < H: y = x[:, :, max(-iy,0) : H+min(-iy,0), max(-ix,0) : W+min(-ix,0)] z[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = y m[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = 1 return z, m #---------------------------------------------------------------------------- # Apply integer translation to a batch of 2D images. Corresponds to the # operator T_x in Appendix E.2. def apply_fractional_translation(x, tx, ty, a=3): _N, _C, H, W = x.shape tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device) ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device) ix = tx.floor().to(torch.int64) iy = ty.floor().to(torch.int64) fx = tx - ix fy = ty - iy b = a - 1 z = torch.zeros_like(x) zx0 = max(ix - b, 0) zy0 = max(iy - b, 0) zx1 = min(ix + a, 0) + W zy1 = min(iy + a, 0) + H if zx0 < zx1 and zy0 < zy1: taps = torch.arange(a * 2, device=x.device) - b filter_x = (sinc(taps - fx) * sinc((taps - fx) / a)).unsqueeze(0) filter_y = (sinc(taps - fy) * sinc((taps - fy) / a)).unsqueeze(1) y = x y = upfirdn2d.filter2d(y, filter_x / filter_x.sum(), padding=[b,a,0,0]) y = upfirdn2d.filter2d(y, filter_y / filter_y.sum(), padding=[0,0,b,a]) y = y[:, :, max(b-iy,0) : H+b+a+min(-iy-a,0), max(b-ix,0) : W+b+a+min(-ix-a,0)] z[:, :, zy0:zy1, zx0:zx1] = y m = torch.zeros_like(x) mx0 = max(ix + a, 0) my0 = max(iy + a, 0) mx1 = min(ix - b, 0) + W my1 = min(iy - b, 0) + H if mx0 < mx1 and my0 < my1: m[:, :, my0:my1, mx0:mx1] = 1 return z, m #---------------------------------------------------------------------------- # Construct an oriented low-pass filter that applies the appropriate # bandlimit with respect to the input and output of the given affine 2D # image transformation. def construct_affine_bandlimit_filter(mat, a=3, amax=16, aflt=64, up=4, cutoff_in=1, cutoff_out=1): assert a <= amax < aflt mat = torch.as_tensor(mat).to(torch.float32) # Construct 2D filter taps in input & output coordinate spaces. taps = ((torch.arange(aflt * up * 2 - 1, device=mat.device) + 1) / up - aflt).roll(1 - aflt * up) yi, xi = torch.meshgrid(taps, taps) xo, yo = (torch.stack([xi, yi], dim=2) @ mat[:2, :2].t()).unbind(2) # Convolution of two oriented 2D sinc filters. fi = sinc(xi * cutoff_in) * sinc(yi * cutoff_in) fo = sinc(xo * cutoff_out) * sinc(yo * cutoff_out) f = torch.fft.ifftn(torch.fft.fftn(fi) * torch.fft.fftn(fo)).real # Convolution of two oriented 2D Lanczos windows. wi = lanczos_window(xi, a) * lanczos_window(yi, a) wo = lanczos_window(xo, a) * lanczos_window(yo, a) w = torch.fft.ifftn(torch.fft.fftn(wi) * torch.fft.fftn(wo)).real # Construct windowed FIR filter. f = f * w # Finalize. c = (aflt - amax) * up f = f.roll([aflt * up - 1] * 2, dims=[0,1])[c:-c, c:-c] f = torch.nn.functional.pad(f, [0, 1, 0, 1]).reshape(amax * 2, up, amax * 2, up) f = f / f.sum([0,2], keepdim=True) / (up ** 2) f = f.reshape(amax * 2 * up, amax * 2 * up)[:-1, :-1] return f #---------------------------------------------------------------------------- # Apply the given affine transformation to a batch of 2D images. def apply_affine_transformation(x, mat, up=4, **filter_kwargs): _N, _C, H, W = x.shape mat = torch.as_tensor(mat).to(dtype=torch.float32, device=x.device) # Construct filter. f = construct_affine_bandlimit_filter(mat, up=up, **filter_kwargs) assert f.ndim == 2 and f.shape[0] == f.shape[1] and f.shape[0] % 2 == 1 p = f.shape[0] // 2 # Construct sampling grid. theta = mat.inverse() theta[:2, 2] *= 2 theta[0, 2] += 1 / up / W theta[1, 2] += 1 / up / H theta[0, :] *= W / (W + p / up * 2) theta[1, :] *= H / (H + p / up * 2) theta = theta[:2, :3].unsqueeze(0).repeat([x.shape[0], 1, 1]) g = torch.nn.functional.affine_grid(theta, x.shape, align_corners=False) # Resample image. y = upfirdn2d.upsample2d(x=x, f=f, up=up, padding=p) z = torch.nn.functional.grid_sample(y, g, mode='bilinear', padding_mode='zeros', align_corners=False) # Form mask. m = torch.zeros_like(y) c = p * 2 + 1 m[:, :, c:-c, c:-c] = 1 m = torch.nn.functional.grid_sample(m, g, mode='nearest', padding_mode='zeros', align_corners=False) return z, m #---------------------------------------------------------------------------- # Apply fractional rotation to a batch of 2D images. Corresponds to the # operator R_\alpha in Appendix E.3. def apply_fractional_rotation(x, angle, a=3, **filter_kwargs): angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device) mat = rotation_matrix(angle) return apply_affine_transformation(x, mat, a=a, amax=a*2, **filter_kwargs) #---------------------------------------------------------------------------- # Modify the frequency content of a batch of 2D images as if they had undergo # fractional rotation -- but without actually rotating them. Corresponds to # the operator R^*_\alpha in Appendix E.3. def apply_fractional_pseudo_rotation(x, angle, a=3, **filter_kwargs): angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device) mat = rotation_matrix(-angle) f = construct_affine_bandlimit_filter(mat, a=a, amax=a*2, up=1, **filter_kwargs) y = upfirdn2d.filter2d(x=x, f=f) m = torch.zeros_like(y) c = f.shape[0] // 2 m[:, :, c:-c, c:-c] = 1 return y, m #---------------------------------------------------------------------------- # Compute the selected equivariance metrics for the given generator. def compute_equivariance_metrics(opts, num_samples, batch_size, translate_max=0.125, rotate_max=1, compute_eqt_int=False, compute_eqt_frac=False, compute_eqr=False): assert compute_eqt_int or compute_eqt_frac or compute_eqr # Setup generator and labels. G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device) I = torch.eye(3, device=opts.device) M = getattr(getattr(getattr(G, 'synthesis', None), 'input', None), 'transform', None) if M is None: raise ValueError('Cannot compute equivariance metrics; the given generator does not support user-specified image transformations') c_iter = metric_utils.iterate_random_labels(opts=opts, batch_size=batch_size) # Sampling loop. sums = None progress = opts.progress.sub(tag='eq sampling', num_items=num_samples) for batch_start in range(0, num_samples, batch_size * opts.num_gpus): progress.update(batch_start) s = [] # Randomize noise buffers, if any. for name, buf in G.named_buffers(): if name.endswith('.noise_const'): buf.copy_(torch.randn_like(buf)) # Run mapping network. z = torch.randn([batch_size, G.z_dim], device=opts.device) c = next(c_iter) ws = G.mapping(z=z, c=c) # Generate reference image. M[:] = I orig = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs) # Integer translation (EQ-T). if compute_eqt_int: t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max t = (t * G.img_resolution).round() / G.img_resolution M[:] = I M[:2, 2] = -t img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs) ref, mask = apply_integer_translation(orig, t[0], t[1]) s += [(ref - img).square() * mask, mask] # Fractional translation (EQ-T_frac). if compute_eqt_frac: t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max M[:] = I M[:2, 2] = -t img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs) ref, mask = apply_fractional_translation(orig, t[0], t[1]) s += [(ref - img).square() * mask, mask] # Rotation (EQ-R). if compute_eqr: angle = (torch.rand([], device=opts.device) * 2 - 1) * (rotate_max * np.pi) M[:] = rotation_matrix(-angle) img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs) ref, ref_mask = apply_fractional_rotation(orig, angle) pseudo, pseudo_mask = apply_fractional_pseudo_rotation(img, angle) mask = ref_mask * pseudo_mask s += [(ref - pseudo).square() * mask, mask] # Accumulate results. s = torch.stack([x.to(torch.float64).sum() for x in s]) sums = sums + s if sums is not None else s progress.update(num_samples) # Compute PSNRs. if opts.num_gpus > 1: torch.distributed.all_reduce(sums) sums = sums.cpu() mses = sums[0::2] / sums[1::2] psnrs = np.log10(2) * 20 - mses.log10() * 10 psnrs = tuple(psnrs.numpy()) return psnrs[0] if len(psnrs) == 1 else psnrs #----------------------------------------------------------------------------