# MIT License # Copyright (c) 2022 Petr Kellnhofer # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor: """ Left-multiplies MxM @ NxM. Returns NxM. """ res = torch.matmul(vectors4, matrix.T) return res def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor: """ Normalize vector lengths. """ return vectors / (torch.norm(vectors, dim=-1, keepdim=True)) def torch_dot(x: torch.Tensor, y: torch.Tensor): """ Dot product of two tensors. """ return (x * y).sum(-1) def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length): """ Author: Petr Kellnhofer Intersects rays with the [-1, 1] NDC volume. Returns min and max distance of entry. Returns -1 for no intersection. https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection """ o_shape = rays_o.shape rays_o = rays_o.detach().reshape(-1, 3) rays_d = rays_d.detach().reshape(-1, 3) bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)] # 不要急,虽然这里是[-0.5,0.5],但是在sample_from_planes的时候又把coordinate乘了2, 所以box_side_length指的是box的正负左右边长。 bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)] bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device) is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device) # Precompute inverse for stability. invdir = 1 / rays_d # 1/k sign = (invdir < 0).long() # Intersect with YZ plane. tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] # ymin = -0.5 = kx + b == > x = (-0.5-b) * (1/k) tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] # ymax = 0.5 = kx + b == > x = (-0.5-b) * (1/k) # Intersect with XZ plane. tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] # Resolve parallel rays. is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False # Use the shortest intersection. tmin = torch.max(tmin, tymin) # 分别和六个平面都取交点,然后选择is_valid(去掉反方向的、平行的),并且最近的两个平面提供tmin和tmax tmax = torch.min(tmax, tymax) # Intersect with XY plane. tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] # Resolve parallel rays. is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False # Use the shortest intersection. tmin = torch.max(tmin, tzmin) tmax = torch.min(tmax, tzmax) # Mark invalid. tmin[torch.logical_not(is_valid)] = -1 tmax[torch.logical_not(is_valid)] = -2 return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1) def linspace(start: torch.Tensor, stop: torch.Tensor, num: int): """ Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive. Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch. """ # create a tensor of 'num' steps from 0 to 1 steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1) # reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings # - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript # "cannot statically infer the expected size of a list in this contex", hence the code below for i in range(start.ndim): steps = steps.unsqueeze(-1) # the output starts at 'start' and increments until 'stop' in each dimension out = start[None] + steps * (stop - start)[None] return out