# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """ The ray sampler is a module that takes in camera matrices and resolution and batches of rays. Expects cam2world matrices that use the OpenCV camera coordinate system conventions. """ import torch class RaySampler(torch.nn.Module): def __init__(self): super().__init__() self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None def forward(self, cam2world_matrix, intrinsics, resolution): """ Create batches of rays and return origins and directions. cam2world_matrix: (N, 4, 4) intrinsics: (N, 3, 3) resolution: int ray_origins: (N, M, 3) ray_dirs: (N, M, 2) """ N, M = cam2world_matrix.shape[0], resolution**2 cam_locs_world = cam2world_matrix[:, :3, 3] fx = intrinsics[:, 0, 0] fy = intrinsics[:, 1, 1] cx = intrinsics[:, 0, 2] cy = intrinsics[:, 1, 2] sk = intrinsics[:, 0, 1] uv = torch.stack(torch.meshgrid(torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), indexing='ij')) * (1./resolution) + (0.5/resolution) uv = uv.flip(0).reshape(2, -1).transpose(1, 0) uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1) x_cam = uv[:, :, 0].view(N, -1) y_cam = uv[:, :, 1].view(N, -1) z_cam = torch.ones((N, M), device=cam2world_matrix.device) x_lift = (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1) world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3] ray_dirs = world_rel_points - cam_locs_world[:, None, :] ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2) ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1) return ray_origins, ray_dirs # def forward_with_src_c2w(self, src_cam2word_matrix, cam2world_matrix, intrinsics, resolution): # """ # Create batches of rays and return origins and directions. # cam2world_matrix: (N, 4, 4) # intrinsics: (N, 3, 3) # resolution: int # ray_origins: (N, M, 3) # ray_dirs: (N, M, 2) # """ # # src_world2cam_matrix = src_cam2word_matrix.clone() # # src_world2cam_matrix[:, :3,:3] = src_world2cam_matrix[:, :3,:3].permute(0, 2, 1) # # src_world2cam_matrix[:, :, 3] = - src_world2cam_matrix[:, :, 3] # # new_cam2world_matrix = torch.bmm(src_world2cam_matrix, cam2world_matrix) # # cam2world_matrix = new_cam2world_matrix # N, M = cam2world_matrix.shape[0], resolution**2 # cam_locs_world = cam2world_matrix[:, :3, 3] # fx = intrinsics[:, 0, 0] # fy = intrinsics[:, 1, 1] # cx = intrinsics[:, 0, 2] # cy = intrinsics[:, 1, 2] # sk = intrinsics[:, 0, 1] # uv = torch.stack(torch.meshgrid(torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), indexing='ij')) * (1./resolution) + (0.5/resolution) # uv = uv.flip(0).reshape(2, -1).transpose(1, 0) # uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1) # x_cam = uv[:, :, 0].view(N, -1) # y_cam = uv[:, :, 1].view(N, -1) # z_cam = torch.ones((N, M), device=cam2world_matrix.device) # x_lift = (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam # y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam # cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1) # world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3] # ray_dirs = world_rel_points - cam_locs_world[:, None, :] # ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2) # ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1) # return ray_origins, ray_dirs