import os import numpy as np import math import json import imageio import torch import tqdm import cv2 from data_util.face3d_helper import Face3DHelper from utils.commons.euler2rot import euler_trans_2_c2w, c2w_to_euler_trans from data_gen.utils.process_video.euler2quaterion import euler2quaterion, quaterion2euler from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel def euler2rot(euler_angle): batch_size = euler_angle.shape[0] theta = euler_angle[:, 0].reshape(-1, 1, 1) phi = euler_angle[:, 1].reshape(-1, 1, 1) psi = euler_angle[:, 2].reshape(-1, 1, 1) one = torch.ones(batch_size, 1, 1).to(euler_angle.device) zero = torch.zeros(batch_size, 1, 1).to(euler_angle.device) rot_x = torch.cat(( torch.cat((one, zero, zero), 1), torch.cat((zero, theta.cos(), theta.sin()), 1), torch.cat((zero, -theta.sin(), theta.cos()), 1), ), 2) rot_y = torch.cat(( torch.cat((phi.cos(), zero, -phi.sin()), 1), torch.cat((zero, one, zero), 1), torch.cat((phi.sin(), zero, phi.cos()), 1), ), 2) rot_z = torch.cat(( torch.cat((psi.cos(), -psi.sin(), zero), 1), torch.cat((psi.sin(), psi.cos(), zero), 1), torch.cat((zero, zero, one), 1) ), 2) return torch.bmm(rot_x, torch.bmm(rot_y, rot_z)) def rot2euler(rot_mat): batch_size = len(rot_mat) # we assert that y in in [-0.5pi, 0.5pi] cos_y = torch.sqrt(rot_mat[:, 1, 2] * rot_mat[:, 1, 2] + rot_mat[:, 2, 2] * rot_mat[:, 2, 2]) theta_x = torch.atan2(-rot_mat[:, 1, 2], rot_mat[:, 2, 2]) theta_y = torch.atan2(rot_mat[:, 2, 0], cos_y) theta_z = torch.atan2(rot_mat[:, 0, 1], rot_mat[:, 0, 0]) euler_angles = torch.zeros([batch_size, 3]) euler_angles[:, 0] = theta_x euler_angles[:, 1] = theta_y euler_angles[:, 2] = theta_z return euler_angles index_lm68_from_lm468 = [127,234,93,132,58,136,150,176,152,400,379,365,288,361,323,454,356,70,63,105,66,107,336,296,334,293,300,168,197,5,4,75,97,2,326,305, 33,160,158,133,153,144,362,385,387,263,373,380,61,40,37,0,267,270,291,321,314,17,84,91,78,81,13,311,308,402,14,178] def plot_lm2d(lm2d): WH = 512 img = np.ones([WH, WH, 3], dtype=np.uint8) * 255 for i in range(len(lm2d)): x, y = lm2d[i] color = (255,0,0) img = cv2.circle(img, center=(int(x),int(y)), radius=3, color=color, thickness=-1) font = cv2.FONT_HERSHEY_SIMPLEX for i in range(len(lm2d)): x, y = lm2d[i] img = cv2.putText(img, f"{i}", org=(int(x),int(y)), fontFace=font, fontScale=0.3, color=(255,0,0)) return img def get_face_rect(lms, h, w): """ lms: [68, 2] h, w: int return: [4,] """ assert len(lms) == 68 # min_x, max_x = np.min(lms, 0)[0], np.max(lms, 0)[0] min_x, max_x = np.min(lms[:, 0]), np.max(lms[:, 0]) cx = int((min_x+max_x)/2.0) cy = int(lms[27, 1]) h_w = int((max_x-cx)*1.5) h_h = int((lms[8, 1]-cy)*1.15) rect_x = cx - h_w rect_y = cy - h_h if rect_x < 0: rect_x = 0 if rect_y < 0: rect_y = 0 rect_w = min(w-1-rect_x, 2*h_w) rect_h = min(h-1-rect_y, 2*h_h) # rect = np.array((rect_x, rect_y, rect_w, rect_h), dtype=np.int32) # rect = [rect_x, rect_y, rect_w, rect_h] rect = [rect_x, rect_x + rect_w, rect_y, rect_y + rect_h] # min_j, max_j, min_i, max_i return rect # this x is width, y is height def get_lip_rect(lms, h, w): """ lms: [68, 2] h, w: int return: [4,] """ # this x is width, y is height # for lms, lms[:, 0] is width, lms[:, 1] is height assert len(lms) == 68 lips = slice(48, 60) lms = lms[lips] min_x, max_x = np.min(lms[:, 0]), np.max(lms[:, 0]) min_y, max_y = np.min(lms[:, 1]), np.max(lms[:, 1]) cx = int((min_x+max_x)/2.0) cy = int((min_y+max_y)/2.0) h_w = int((max_x-cx)*1.2) h_h = int((max_y-cy)*1.2) h_w = max(h_w, h_h) h_h = h_w rect_x = cx - h_w rect_y = cy - h_h rect_w = 2*h_w rect_h = 2*h_h if rect_x < 0: rect_x = 0 if rect_y < 0: rect_y = 0 if rect_x + rect_w > w: rect_x = w - rect_w if rect_y + rect_h > h: rect_y = h - rect_h rect = [rect_x, rect_x + rect_w, rect_y, rect_y + rect_h] # min_j, max_j, min_i, max_i return rect # this x is width, y is height # def get_lip_rect(lms, h, w): # """ # lms: [68, 2] # h, w: int # return: [4,] # """ # assert len(lms) == 68 # lips = slice(48, 60) # # this x is width, y is height # xmin, xmax = int(lms[lips, 1].min()), int(lms[lips, 1].max()) # ymin, ymax = int(lms[lips, 0].min()), int(lms[lips, 0].max()) # # padding to H == W # cx = (xmin + xmax) // 2 # cy = (ymin + ymax) // 2 # l = max(xmax - xmin, ymax - ymin) // 2 # xmin = max(0, cx - l) # xmax = min(h, cx + l) # ymin = max(0, cy - l) # ymax = min(w, cy + l) # lip_rect = [xmin, xmax, ymin, ymax] # return lip_rect def get_win_conds(conds, idx, smo_win_size=8, pad_option='zero'): """ conds: [b, t=16, h=29] idx: long, time index of the selected frame """ idx = max(0, idx) idx = min(idx, conds.shape[0]-1) smo_half_win_size = smo_win_size//2 left_i = idx - smo_half_win_size right_i = idx + (smo_win_size - smo_half_win_size) pad_left, pad_right = 0, 0 if left_i < 0: pad_left = -left_i left_i = 0 if right_i > conds.shape[0]: pad_right = right_i - conds.shape[0] right_i = conds.shape[0] conds_win = conds[left_i:right_i] if pad_left > 0: if pad_option == 'zero': conds_win = np.concatenate([np.zeros_like(conds_win)[:pad_left], conds_win], axis=0) elif pad_option == 'edge': edge_value = conds[0][np.newaxis, ...] conds_win = np.concatenate([edge_value] * pad_left + [conds_win], axis=0) else: raise NotImplementedError if pad_right > 0: if pad_option == 'zero': conds_win = np.concatenate([conds_win, np.zeros_like(conds_win)[:pad_right]], axis=0) elif pad_option == 'edge': edge_value = conds[-1][np.newaxis, ...] conds_win = np.concatenate([conds_win] + [edge_value] * pad_right , axis=0) else: raise NotImplementedError assert conds_win.shape[0] == smo_win_size return conds_win def load_processed_data(processed_dir): # load necessary files background_img_name = os.path.join(processed_dir, "bg.jpg") assert os.path.exists(background_img_name) head_img_dir = os.path.join(processed_dir, "head_imgs") torso_img_dir = os.path.join(processed_dir, "inpaint_torso_imgs") gt_img_dir = os.path.join(processed_dir, "gt_imgs") hubert_npy_name = os.path.join(processed_dir, "aud_hubert.npy") mel_f0_npy_name = os.path.join(processed_dir, "aud_mel_f0.npy") coeff_npy_name = os.path.join(processed_dir, "coeff_fit_mp.npy") lm2d_npy_name = os.path.join(processed_dir, "lms_2d.npy") ret_dict = {} ret_dict['bg_img'] = imageio.imread(background_img_name) ret_dict['H'], ret_dict['W'] = ret_dict['bg_img'].shape[:2] ret_dict['focal'], ret_dict['cx'], ret_dict['cy'] = face_model.focal, face_model.center, face_model.center print("loading lm2d coeff ...") lm2d_arr = np.load(lm2d_npy_name) face_rect_lst = [] lip_rect_lst = [] for lm2d in lm2d_arr: if len(lm2d) in [468, 478]: lm2d = lm2d[index_lm68_from_lm468] face_rect = get_face_rect(lm2d, ret_dict['H'], ret_dict['W']) lip_rect = get_lip_rect(lm2d, ret_dict['H'], ret_dict['W']) face_rect_lst.append(face_rect) lip_rect_lst.append(lip_rect) face_rects = np.stack(face_rect_lst, axis=0) # [T, 4] print("loading fitted 3dmm coeff ...") coeff_dict = np.load(coeff_npy_name, allow_pickle=True).tolist() identity_arr = coeff_dict['id'] exp_arr = coeff_dict['exp'] ret_dict['id'] = identity_arr ret_dict['exp'] = exp_arr euler_arr = ret_dict['euler'] = coeff_dict['euler'] trans_arr = ret_dict['trans'] = coeff_dict['trans'] print("calculating lm3d ...") idexp_lm3d_arr = face3d_helper.reconstruct_idexp_lm3d(torch.from_numpy(identity_arr), torch.from_numpy(exp_arr)).cpu().numpy().reshape([-1, 68*3]) len_motion = len(idexp_lm3d_arr) video_idexp_lm3d_mean = idexp_lm3d_arr.mean(axis=0) video_idexp_lm3d_std = idexp_lm3d_arr.std(axis=0) ret_dict['idexp_lm3d'] = idexp_lm3d_arr ret_dict['idexp_lm3d_mean'] = video_idexp_lm3d_mean ret_dict['idexp_lm3d_std'] = video_idexp_lm3d_std # now we convert the euler_trans from deep3d convention to adnerf convention eulers = torch.FloatTensor(euler_arr) trans = torch.FloatTensor(trans_arr) rots = face_model.compute_rotation(eulers) # rotation matrix is a better intermediate for convention-transplan than euler # handle the camera pose to geneface's convention trans[:, 2] = 10 - trans[:, 2] # 抵消fit阶段的to_camera操作,即trans[...,2] = 10 - trans[...,2] rots = rots.permute(0, 2, 1) trans[:, 2] = - trans[:,2] # 因为intrinsic proj不同 # below is the NeRF camera preprocessing strategy, see `save_transforms` in data_util/process.py trans = trans / 10.0 rots_inv = rots.permute(0, 2, 1) trans_inv = - torch.bmm(rots_inv, trans.unsqueeze(2)) pose = torch.eye(4, dtype=torch.float32).unsqueeze(0).repeat([len_motion, 1, 1]) # [T, 4, 4] pose[:, :3, :3] = rots_inv pose[:, :3, 3] = trans_inv[:, :, 0] c2w_transform_matrices = pose.numpy() # process the audio features used for postnet training print("loading hubert ...") hubert_features = np.load(hubert_npy_name) print("loading Mel and F0 ...") mel_f0_features = np.load(mel_f0_npy_name, allow_pickle=True).tolist() ret_dict['hubert'] = hubert_features ret_dict['mel'] = mel_f0_features['mel'] ret_dict['f0'] = mel_f0_features['f0'] # obtaining train samples frame_indices = list(range(len_motion)) num_train = len_motion // 11 * 10 train_indices = frame_indices[:num_train] val_indices = frame_indices[num_train:] for split in ['train', 'val']: if split == 'train': indices = train_indices samples = [] ret_dict['train_samples'] = samples elif split == 'val': indices = val_indices samples = [] ret_dict['val_samples'] = samples for idx in indices: sample = {} sample['idx'] = idx sample['head_img_fname'] = os.path.join(head_img_dir,f"{idx:08d}.png") sample['torso_img_fname'] = os.path.join(torso_img_dir,f"{idx:08d}.png") sample['gt_img_fname'] = os.path.join(gt_img_dir,f"{idx:08d}.jpg") # assert os.path.exists(sample['head_img_fname']) and os.path.exists(sample['torso_img_fname']) and os.path.exists(sample['gt_img_fname']) sample['face_rect'] = face_rects[idx] sample['lip_rect'] = lip_rect_lst[idx] sample['c2w'] = c2w_transform_matrices[idx] samples.append(sample) return ret_dict class Binarizer: def __init__(self): self.data_dir = 'data/' def parse(self, video_id): processed_dir = os.path.join(self.data_dir, 'processed/videos', video_id) binary_dir = os.path.join(self.data_dir, 'binary/videos', video_id) out_fname = os.path.join(binary_dir, "trainval_dataset.npy") os.makedirs(binary_dir, exist_ok=True) ret = load_processed_data(processed_dir) mel_name = os.path.join(processed_dir, 'aud_mel_f0.npy') mel_f0_dict = np.load(mel_name, allow_pickle=True).tolist() ret.update(mel_f0_dict) np.save(out_fname, ret, allow_pickle=True) if __name__ == '__main__': from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument('--video_id', type=str, default='May', help='') args = parser.parse_args() ### Process Single Long Audio for NeRF dataset video_id = args.video_id face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM', camera_distance=10, focal=1015) face_model.to("cpu") face3d_helper = Face3DHelper() binarizer = Binarizer() binarizer.parse(video_id) print(f"Binarization for {video_id} Done!")