import os import numpy as np import torch import torch.nn as nn from scipy.io import loadmat from deep_3drecon.deep_3drecon_models.bfm import perspective_projection class Face3DHelper(nn.Module): def __init__(self, bfm_dir='deep_3drecon/BFM', keypoint_mode='lm68', use_gpu=True): super().__init__() self.keypoint_mode = keypoint_mode # lm68 | mediapipe self.bfm_dir = bfm_dir self.load_3dmm() if use_gpu: self.to("cuda") def load_3dmm(self): model = loadmat(os.path.join(self.bfm_dir, "BFM_model_front.mat")) self.register_buffer('mean_shape',torch.from_numpy(model['meanshape'].transpose()).float()) # mean face shape. [3*N, 1], N=35709, xyz=3, ==> 3*N=107127 mean_shape = self.mean_shape.reshape([-1, 3]) # re-center mean_shape = mean_shape - torch.mean(mean_shape, dim=0, keepdims=True) self.mean_shape = mean_shape.reshape([-1, 1]) self.register_buffer('id_base',torch.from_numpy(model['idBase']).float()) # identity basis. [3*N,80], we have 80 eigen faces for identity self.register_buffer('exp_base',torch.from_numpy(model['exBase']).float()) # expression basis. [3*N,64], we have 64 eigen faces for expression self.register_buffer('mean_texure',torch.from_numpy(model['meantex'].transpose()).float()) # mean face texture. [3*N,1] (0-255) self.register_buffer('tex_base',torch.from_numpy(model['texBase']).float()) # texture basis. [3*N,80], rgb=3 self.register_buffer('point_buf',torch.from_numpy(model['point_buf']).float()) # triangle indices for each vertex that lies in. starts from 1. [N,8] (1-F) self.register_buffer('face_buf',torch.from_numpy(model['tri']).float()) # vertex indices in each triangle. starts from 1. [F,3] (1-N) if self.keypoint_mode == 'mediapipe': self.register_buffer('key_points', torch.from_numpy(np.load("deep_3drecon/BFM/index_mp468_from_mesh35709.npy").astype(np.int64))) unmatch_mask = self.key_points < 0 self.key_points[unmatch_mask] = 0 else: self.register_buffer('key_points',torch.from_numpy(model['keypoints'].squeeze().astype(np.int_)).long()) # vertex indices of 68 facial landmarks. starts from 1. [68,1] self.register_buffer('key_mean_shape',self.mean_shape.reshape([-1,3])[self.key_points,:]) self.register_buffer('key_id_base', self.id_base.reshape([-1,3,80])[self.key_points, :, :].reshape([-1,80])) self.register_buffer('key_exp_base', self.exp_base.reshape([-1,3,64])[self.key_points, :, :].reshape([-1,64])) self.key_id_base_np = self.key_id_base.cpu().numpy() self.key_exp_base_np = self.key_exp_base.cpu().numpy() self.register_buffer('persc_proj', torch.tensor(perspective_projection(focal=1015, center=112))) def split_coeff(self, coeff): """ coeff: Tensor[B, T, c=257] or [T, c=257] """ ret_dict = { 'identity': coeff[..., :80], # identity, [b, t, c=80] 'expression': coeff[..., 80:144], # expression, [b, t, c=80] 'texture': coeff[..., 144:224], # texture, [b, t, c=80] 'euler': coeff[..., 224:227], # euler euler for pose, [b, t, c=3] 'translation': coeff[..., 254:257], # translation, [b, t, c=3] 'gamma': coeff[..., 227:254] # lighting, [b, t, c=27] } return ret_dict def reconstruct_face_mesh(self, id_coeff, exp_coeff): """ Generate a pose-independent 3D face mesh! id_coeff: Tensor[T, c=80] exp_coeff: Tensor[T, c=64] """ id_coeff = id_coeff.to(self.key_id_base.device) exp_coeff = exp_coeff.to(self.key_id_base.device) mean_face = self.mean_shape.squeeze().reshape([1, -1]) # [3N, 1] ==> [1, 3N] id_base, exp_base = self.id_base, self.exp_base # [3*N, C] identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3N] ==> [t,3N] expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3N] ==> [t,3N] face = mean_face + identity_diff_face + expression_diff_face # [t,3N] face = face.reshape([face.shape[0], -1, 3]) # [t,N,3] # re-centering the face with mean_xyz, so the face will be in [-1, 1] # mean_xyz = self.mean_shape.squeeze().reshape([-1,3]).mean(dim=0) # [1, 3] # face_mesh = face - mean_xyz.unsqueeze(0) # [t,N,3] return face def reconstruct_cano_lm3d(self, id_coeff, exp_coeff): """ Generate 3D landmark with keypoint base! id_coeff: Tensor[T, c=80] exp_coeff: Tensor[T, c=64] """ id_coeff = id_coeff.to(self.key_id_base.device) exp_coeff = exp_coeff.to(self.key_id_base.device) mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) # [3*68, 1] ==> [1, 3*68] id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C] identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] face = mean_face + identity_diff_face + expression_diff_face # [t,3N] face = face.reshape([face.shape[0], -1, 3]) # [t,N,3] # re-centering the face with mean_xyz, so the face will be in [-1, 1] # mean_xyz = self.key_mean_shape.squeeze().reshape([-1,3]).mean(dim=0) # [1, 3] # lm3d = face - mean_xyz.unsqueeze(0) # [t,N,3] return face def reconstruct_lm3d(self, id_coeff, exp_coeff, euler, trans, to_camera=True): """ Generate 3D landmark with keypoint base! id_coeff: Tensor[T, c=80] exp_coeff: Tensor[T, c=64] """ id_coeff = id_coeff.to(self.key_id_base.device) exp_coeff = exp_coeff.to(self.key_id_base.device) mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) # [3*68, 1] ==> [1, 3*68] id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C] identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] face = mean_face + identity_diff_face + expression_diff_face # [t,3N] face = face.reshape([face.shape[0], -1, 3]) # [t,N,3] # re-centering the face with mean_xyz, so the face will be in [-1, 1] rot = self.compute_rotation(euler) # transform lm3d = face @ rot + trans.unsqueeze(1) # [t, N, 3] # to camera if to_camera: lm3d[...,-1] = 10 - lm3d[...,-1] return lm3d def reconstruct_lm2d_nerf(self, id_coeff, exp_coeff, euler, trans): lm2d = self.reconstruct_lm2d(id_coeff, exp_coeff, euler, trans, to_camera=False) lm2d[..., 0] = 1 - lm2d[..., 0] lm2d[..., 1] = 1 - lm2d[..., 1] return lm2d def reconstruct_lm2d(self, id_coeff, exp_coeff, euler, trans, to_camera=True): """ Generate 3D landmark with keypoint base! id_coeff: Tensor[T, c=80] exp_coeff: Tensor[T, c=64] """ is_btc_flag = True if id_coeff.ndim == 3 else False if is_btc_flag: b,t,_ = id_coeff.shape id_coeff = id_coeff.reshape([b*t,-1]) exp_coeff = exp_coeff.reshape([b*t,-1]) euler = euler.reshape([b*t,-1]) trans = trans.reshape([b*t,-1]) id_coeff = id_coeff.to(self.key_id_base.device) exp_coeff = exp_coeff.to(self.key_id_base.device) mean_face = self.key_mean_shape.squeeze().reshape([1, -1]) # [3*68, 1] ==> [1, 3*68] id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C] identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] face = mean_face + identity_diff_face + expression_diff_face # [t,3N] face = face.reshape([face.shape[0], -1, 3]) # [t,N,3] # re-centering the face with mean_xyz, so the face will be in [-1, 1] rot = self.compute_rotation(euler) # transform lm3d = face @ rot + trans.unsqueeze(1) # [t, N, 3] # to camera if to_camera: lm3d[...,-1] = 10 - lm3d[...,-1] # to image_plane lm3d = lm3d @ self.persc_proj lm2d = lm3d[..., :2] / lm3d[..., 2:] # flip lm2d[..., 1] = 224 - lm2d[..., 1] lm2d /= 224 if is_btc_flag: return lm2d.reshape([b,t,-1,2]) return lm2d def compute_rotation(self, euler): """ Return: rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat Parameters: euler -- torch.tensor, size (B, 3), radian """ batch_size = euler.shape[0] euler = euler.to(self.key_id_base.device) ones = torch.ones([batch_size, 1]).to(self.key_id_base.device) zeros = torch.zeros([batch_size, 1]).to(self.key_id_base.device) x, y, z = euler[:, :1], euler[:, 1:2], euler[:, 2:], rot_x = torch.cat([ ones, zeros, zeros, zeros, torch.cos(x), -torch.sin(x), zeros, torch.sin(x), torch.cos(x) ], dim=1).reshape([batch_size, 3, 3]) rot_y = torch.cat([ torch.cos(y), zeros, torch.sin(y), zeros, ones, zeros, -torch.sin(y), zeros, torch.cos(y) ], dim=1).reshape([batch_size, 3, 3]) rot_z = torch.cat([ torch.cos(z), -torch.sin(z), zeros, torch.sin(z), torch.cos(z), zeros, zeros, zeros, ones ], dim=1).reshape([batch_size, 3, 3]) rot = rot_z @ rot_y @ rot_x return rot.permute(0, 2, 1) def reconstruct_idexp_lm3d(self, id_coeff, exp_coeff): """ Generate 3D landmark with keypoint base! id_coeff: Tensor[T, c=80] exp_coeff: Tensor[T, c=64] """ id_coeff = id_coeff.to(self.key_id_base.device) exp_coeff = exp_coeff.to(self.key_id_base.device) id_base, exp_base = self.key_id_base, self.key_exp_base # [3*68, C] identity_diff_face = torch.matmul(id_coeff, id_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] expression_diff_face = torch.matmul(exp_coeff, exp_base.transpose(0,1)) # [t,c],[c,3*68] ==> [t,3*68] face = identity_diff_face + expression_diff_face # [t,3N] face = face.reshape([face.shape[0], -1, 3]) # [t,N,3] lm3d = face * 10 return lm3d def reconstruct_idexp_lm3d_np(self, id_coeff, exp_coeff): """ Generate 3D landmark with keypoint base! id_coeff: Tensor[T, c=80] exp_coeff: Tensor[T, c=64] """ id_base, exp_base = self.key_id_base_np, self.key_exp_base_np # [3*68, C] identity_diff_face = np.dot(id_coeff, id_base.T) # [t,c],[c,3*68] ==> [t,3*68] expression_diff_face = np.dot(exp_coeff, exp_base.T) # [t,c],[c,3*68] ==> [t,3*68] face = identity_diff_face + expression_diff_face # [t,3N] face = face.reshape([face.shape[0], -1, 3]) # [t,N,3] lm3d = face * 10 return lm3d def get_eye_mouth_lm_from_lm3d(self, lm3d): eye_lm = lm3d[:, 17:48] # [T, 31, 3] mouth_lm = lm3d[:, 48:68] # [T, 20, 3] return eye_lm, mouth_lm def get_eye_mouth_lm_from_lm3d_batch(self, lm3d): eye_lm = lm3d[:, :, 17:48] # [T, 31, 3] mouth_lm = lm3d[:, :, 48:68] # [T, 20, 3] return eye_lm, mouth_lm def close_mouth_for_idexp_lm3d(self, idexp_lm3d, freeze_as_first_frame=True): idexp_lm3d = idexp_lm3d.reshape([-1, 68,3]) num_frames = idexp_lm3d.shape[0] eps = 0.0 # [n_landmarks=68,xyz=3], x 代表左右,y代表上下,z代表深度 idexp_lm3d[:,49:54, 1] = (idexp_lm3d[:,49:54, 1] + idexp_lm3d[:,range(59,54,-1), 1])/2 + eps * 2 idexp_lm3d[:,range(59,54,-1), 1] = (idexp_lm3d[:,49:54, 1] + idexp_lm3d[:,range(59,54,-1), 1])/2 - eps * 2 idexp_lm3d[:,61:64, 1] = (idexp_lm3d[:,61:64, 1] + idexp_lm3d[:,range(67,64,-1), 1])/2 + eps idexp_lm3d[:,range(67,64,-1), 1] = (idexp_lm3d[:,61:64, 1] + idexp_lm3d[:,range(67,64,-1), 1])/2 - eps idexp_lm3d[:,49:54, 1] += (0.03 - idexp_lm3d[:,49:54, 1].mean(dim=1) + idexp_lm3d[:,61:64, 1].mean(dim=1)).unsqueeze(1).repeat([1,5]) idexp_lm3d[:,range(59,54,-1), 1] += (-0.03 - idexp_lm3d[:,range(59,54,-1), 1].mean(dim=1) + idexp_lm3d[:,range(67,64,-1), 1].mean(dim=1)).unsqueeze(1).repeat([1,5]) if freeze_as_first_frame: idexp_lm3d[:, 48:68,] = idexp_lm3d[0, 48:68].unsqueeze(0).clone().repeat([num_frames, 1,1])*0 return idexp_lm3d.cpu() def close_eyes_for_idexp_lm3d(self, idexp_lm3d): idexp_lm3d = idexp_lm3d.reshape([-1, 68,3]) eps = 0.003 idexp_lm3d[:,37:39, 1] = (idexp_lm3d[:,37:39, 1] + idexp_lm3d[:,range(41,39,-1), 1])/2 + eps idexp_lm3d[:,range(41,39,-1), 1] = (idexp_lm3d[:,37:39, 1] + idexp_lm3d[:,range(41,39,-1), 1])/2 - eps idexp_lm3d[:,43:45, 1] = (idexp_lm3d[:,43:45, 1] + idexp_lm3d[:,range(47,45,-1), 1])/2 + eps idexp_lm3d[:,range(47,45,-1), 1] = (idexp_lm3d[:,43:45, 1] + idexp_lm3d[:,range(47,45,-1), 1])/2 - eps return idexp_lm3d if __name__ == '__main__': import cv2 font = cv2.FONT_HERSHEY_SIMPLEX face_mesh_helper = Face3DHelper('deep_3drecon/BFM') coeff_npy = 'data/coeff_fit_mp/crop_nana_003_coeff_fit_mp.npy' coeff_dict = np.load(coeff_npy, allow_pickle=True).tolist() lm3d = face_mesh_helper.reconstruct_lm2d(torch.tensor(coeff_dict['id']).cuda(), torch.tensor(coeff_dict['exp']).cuda(), torch.tensor(coeff_dict['euler']).cuda(), torch.tensor(coeff_dict['trans']).cuda() ) WH = 512 lm3d = (lm3d * WH).cpu().int().numpy() eye_idx = list(range(36,48)) mouth_idx = list(range(48,68)) import imageio debug_name = 'debug_lm3d.mp4' writer = imageio.get_writer(debug_name, fps=25) for i_img in range(len(lm3d)): lm2d = lm3d[i_img ,:, :2] # [68, 2] img = np.ones([WH, WH, 3], dtype=np.uint8) * 255 for i in range(len(lm2d)): x, y = lm2d[i] if i in eye_idx: color = (0,0,255) elif i in mouth_idx: color = (0,255,0) else: color = (255,0,0) img = cv2.circle(img, center=(x,y), radius=3, color=color, thickness=-1) img = cv2.putText(img, f"{i}", org=(x,y), fontFace=font, fontScale=0.3, color=(255,0,0)) writer.append_data(img) writer.close()