"""This script is the test script for Deep3DFaceRecon_pytorch """ import os from options.test_options import TestOptions from deep_3drecon_models import create_model from util.visualizer import MyVisualizer from util.preprocess import align_img from PIL import Image import numpy as np from util.load_mats import load_lm3d import torch def get_data_path(root='examples'): im_path = [os.path.join(root, i) for i in sorted(os.listdir(root)) if i.endswith('png') or i.endswith('jpg')] lm_path = [i.replace('png', 'txt').replace('jpg', 'txt') for i in im_path] lm_path = [os.path.join(i.replace(i.split(os.path.sep)[-1],''),'detections',i.split(os.path.sep)[-1]) for i in lm_path] return im_path, lm_path def read_data(im_path, lm_path, lm3d_std, to_tensor=True): # to RGB im = Image.open(im_path).convert('RGB') W,H = im.size lm = np.loadtxt(lm_path).astype(np.float32) lm = lm.reshape([-1, 2]) lm[:, -1] = H - 1 - lm[:, -1] _, im, lm, _ = align_img(im, lm, lm3d_std) if to_tensor: im = torch.tensor(np.array(im)/255., dtype=torch.float32).permute(2, 0, 1).unsqueeze(0) lm = torch.tensor(lm).unsqueeze(0) return im, lm def main(rank, opt, name='examples'): device = torch.device(rank) torch.cuda.set_device(device) model = create_model(opt) model.setup(opt) model.device = device model.parallelize() model.eval() visualizer = MyVisualizer(opt) im_path, lm_path = get_data_path(name) lm3d_std = load_lm3d(opt.bfm_folder) for i in range(len(im_path)): print(i, im_path[i]) img_name = im_path[i].split(os.path.sep)[-1].replace('.png','').replace('.jpg','') if not os.path.isfile(lm_path[i]): print("%s is not found !!!"%lm_path[i]) continue im_tensor, lm_tensor = read_data(im_path[i], lm_path[i], lm3d_std) data = { 'imgs': im_tensor, 'lms': lm_tensor } model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results visualizer.display_current_results(visuals, 0, opt.epoch, dataset=name.split(os.path.sep)[-1], save_results=True, count=i, name=img_name, add_image=False) model.save_mesh(os.path.join(visualizer.img_dir, name.split(os.path.sep)[-1], 'epoch_%s_%06d'%(opt.epoch, 0),img_name+'.obj')) # save reconstruction meshes model.save_coeff(os.path.join(visualizer.img_dir, name.split(os.path.sep)[-1], 'epoch_%s_%06d'%(opt.epoch, 0),img_name+'.mat')) # save predicted coefficients if __name__ == '__main__': opt = TestOptions().parse() # get test options main(0, opt, 'deep_3drecon/datasets/examples') print(f"results saved at deep_3drecon/checkpoints/facerecon/results/")