import os import torch import torch.nn.functional as F import librosa import numpy as np import importlib import tqdm import copy import cv2 from scipy.spatial.transform import Rotation def load_img_to_512_hwc_array(img_name): img = cv2.imread(img_name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (512, 512)) return img def load_img_to_normalized_512_bchw_tensor(img_name): img = load_img_to_512_hwc_array(img_name) img = ((torch.tensor(img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2) # [b,c,h,w] return img def mirror_index(index, len_seq): """ get mirror index when indexing a sequence and the index is larger than len_pose args: index: int len_pose: int return: mirror_index: int """ turn = index // len_seq res = index % len_seq if turn % 2 == 0: return res # forward indexing else: return len_seq - res - 1 # reverse indexing def smooth_camera_sequence(camera, kernel_size=7): """ smooth the camera trajectory (i.e., rotation & translation)... args: camera: [N, 25] or [N, 16]. np.ndarray kernel_size: int return: smoothed_camera: [N, 25] or [N, 16]. np.ndarray """ # poses: [N, 25], numpy array N = camera.shape[0] K = kernel_size // 2 poses = camera[:, :16].reshape([-1, 4, 4]).copy() trans = poses[:, :3, 3].copy() # [N, 3] rots = poses[:, :3, :3].copy() # [N, 3, 3] for i in range(N): start = max(0, i - K) end = min(N, i + K + 1) poses[i, :3, 3] = trans[start:end].mean(0) try: poses[i, :3, :3] = Rotation.from_matrix(rots[start:end]).mean().as_matrix() except: if i == 0: poses[i, :3, :3] = rots[i] else: poses[i, :3, :3] = poses[i-1, :3, :3] poses = poses.reshape([-1, 16]) camera[:, :16] = poses return camera def smooth_features_xd(in_tensor, kernel_size=7): """ smooth the feature maps args: in_tensor: [T, c,h,w] or [T, c1,c2,h,w] kernel_size: int return: out_tensor: [T, c,h,w] or [T, c1,c2,h,w] """ t = in_tensor.shape[0] ndim = in_tensor.ndim pad = (kernel_size- 1)//2 in_tensor = torch.cat([torch.flip(in_tensor[0:pad], dims=[0]), in_tensor, torch.flip(in_tensor[t-pad:t], dims=[0])], dim=0) if ndim == 2: # tc _,c = in_tensor.shape in_tensor = in_tensor.permute(1,0).reshape([-1,1,t+2*pad]) # [c, 1, t] elif ndim == 4: # tchw _,c,h,w = in_tensor.shape in_tensor = in_tensor.permute(1,2,3,0).reshape([-1,1,t+2*pad]) # [c, 1, t] elif ndim == 5: # tcchw, like deformation _,c1,c2, h,w = in_tensor.shape in_tensor = in_tensor.permute(1,2,3,4,0).reshape([-1,1,t+2*pad]) # [c, 1, t] else: raise NotImplementedError() avg_kernel = 1 / kernel_size * torch.Tensor([1.]*kernel_size).reshape([1,1,kernel_size]).float().to(in_tensor.device) # [1, 1, kw] out_tensor = F.conv1d(in_tensor, avg_kernel) if ndim == 2: # tc return out_tensor.reshape([c,t]).permute(1,0) elif ndim == 4: # tchw return out_tensor.reshape([c,h,w,t]).permute(3,0,1,2) elif ndim == 5: # tcchw, like deformation return out_tensor.reshape([c1,c2,h,w,t]).permute(4,0,1,2,3) def extract_audio_motion_from_ref_video(video_name): def save_wav16k(audio_name): supported_types = ('.wav', '.mp3', '.mp4', '.avi') assert audio_name.endswith(supported_types), f"Now we only support {','.join(supported_types)} as audio source!" wav16k_name = audio_name[:-4] + '_16k.wav' extract_wav_cmd = f"ffmpeg -i {audio_name} -f wav -ar 16000 -v quiet -y {wav16k_name} -y" os.system(extract_wav_cmd) print(f"Extracted wav file (16khz) from {audio_name} to {wav16k_name}.") return wav16k_name def get_f0( wav16k_name): from data_gen.process_lrs3.process_audio_mel_f0 import extract_mel_from_fname,extract_f0_from_wav_and_mel wav, mel = extract_mel_from_fname(wav16k_name) f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel) f0 = f0.reshape([-1,1]) f0 = torch.tensor(f0) return f0 def get_hubert(wav16k_name): from data_gen.utils.process_audio.extract_hubert import get_hubert_from_16k_wav hubert = get_hubert_from_16k_wav(wav16k_name).detach().numpy() len_mel = hubert.shape[0] x_multiply = 8 if len_mel % x_multiply == 0: num_to_pad = 0 else: num_to_pad = x_multiply - len_mel % x_multiply hubert = np.pad(hubert, pad_width=((0,num_to_pad), (0,0))) hubert = torch.tensor(hubert) return hubert def get_exp(video_name): from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video drv_motion_coeff_dict = fit_3dmm_for_a_video(video_name, save=False) exp = torch.tensor(drv_motion_coeff_dict['exp']) return exp wav16k_name = save_wav16k(video_name) f0 = get_f0(wav16k_name) hubert = get_hubert(wav16k_name) os.system(f"rm {wav16k_name}") exp = get_exp(video_name) target_length = min(len(exp), len(hubert)//2, len(f0)//2) exp = exp[:target_length] f0 = f0[:target_length*2] hubert = hubert[:target_length*2] return exp.unsqueeze(0), hubert.unsqueeze(0), f0.unsqueeze(0) if __name__ == '__main__': extract_audio_motion_from_ref_video('data/raw/videos/crop_0213.mp4')