# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. """ The renderer is a module that takes in rays, decides where to sample along each ray, and computes pixel colors using the volume rendering equation. """ import copy import math import random import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from modules.eg3ds.volumetric_rendering.ray_marcher import MipRayMarcher2 from modules.eg3ds.volumetric_rendering import math_utils from utils.commons.tensor_utils import convert_like from utils.commons.hparams import hparams import copy def generate_planes(): """ Defines planes by the three vectors that form the "axes" of the plane. Should work with arbitrary number of planes and planes of arbitrary orientation. the acutally used axes is the inv_planes (transpose) """ return torch.tensor([[[1, 0, 0], [0, 1, 0], [0, 0, 1]], # xyz [[1, 0, 0], [0, 0, 1], [0, 1, 0]], # xzy [[0, 0, 1], [1, 0, 0], # after transpose, is yzx [0, 1, 0]]], dtype=torch.float32) def project_onto_planes(planes, coordinates): """ Does a projection of a 3D point onto a batch of 2D planes, returning 2D plane coordinates. Takes plane axes of shape n_planes, 3, 3 # Takes coordinates of shape N, M, 3 # returns projections of shape N*n_planes, M, 2 """ N, M, C = coordinates.shape n_planes, _, _ = planes.shape coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3) inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) projections = torch.bmm(coordinates, inv_planes) # return projections def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): assert padding_mode == 'zeros' N, n_planes, C, H, W = plane_features.shape _, M, _ = coordinates.shape plane_features = plane_features.reshape(N*n_planes, C, H, W) coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1)[..., :2] output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) return output_features def sample_from_trigrids(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None, triplane_depth=1): assert padding_mode == 'zeros' N, n_planes, CD, H, W = plane_features.shape _, M, _ = coordinates.shape C, D = CD // triplane_depth, triplane_depth plane_features = plane_features.view(N*n_planes, C, D, H, W) coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1).unsqueeze(2) # (N x n_planes) x 1 x 1 x M x 3 output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 4, 3, 2, 1).reshape(N, n_planes, M, C) return output_features def sample_from_3dgrid(grid, coordinates): """ Expects coordinates in shape (batch_size, num_points_per_batch, 3) Expects grid in shape (1, channels, H, W, D) (Also works if grid has batch size) Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) """ batch_size, n_coords, n_dims = coordinates.shape sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1), coordinates.reshape(batch_size, 1, 1, -1, n_dims), mode='bilinear', padding_mode='zeros', align_corners=False) N, C, H, W, D = sampled_features.shape sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) return sampled_features class ImportanceRenderer(torch.nn.Module): def __init__(self, hp=None): super().__init__() global hparams self.hparams = copy.copy(hparams) if hp is None else copy.copy(hp) hparams = self.hparams self.ray_marcher = MipRayMarcher2() self.plane_axes = generate_planes() self.triplane_feature_type = hparams.get("triplane_feature_type", "triplane") def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options): self.plane_axes = self.plane_axes.to(ray_origins.device) if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto': ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) # 根据ndc world bbox的大小(默认-1,1),自动计算near和far is_ray_valid = ray_end > ray_start if torch.any(is_ray_valid).item(): ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() else: # 如果bbox没有被限定在-1,1的bbox里面,使用自行设定的near far # Create stratified depth samples ray_start, ray_end = rendering_options['ray_start'], rendering_options['ray_end'] depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape # Coarse Pass sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) colors_coarse = out['rgb'] densities_coarse = out['sigma'] colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1]) densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1) # Fine Pass N_importance = rendering_options['depth_resolution_importance'] if N_importance > 0: _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) depths_fine = self.sample_importance(depths_coarse, weights, N_importance) sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3) sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) colors_fine = out['rgb'] densities_fine = out['sigma'] colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1]) densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1) all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, depths_fine, colors_fine, densities_fine) # Aggregate rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) else: rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) return rgb_final, depth_final, weights.sum(2), is_ray_valid def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): hparams = self.hparams if hparams['enable_rescale_plane_regulation'] and self.training: target_size = random.randint(int(256 * hparams.get("min_rescale_factor", 0.5)), 256) planes = rearrange(planes, "n k c h w -> n (k c) h w") planes = F.interpolate(planes, (target_size, target_size), mode='bilinear', align_corners=False, antialias=False) planes = rearrange(planes, "n (k c) h w -> n k c h w", k=3) self.plane_axes = self.plane_axes.to(planes.device) if self.triplane_feature_type in ["triplane"]: sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) elif self.triplane_feature_type in ["trigrid", 'trigrid_v2']: sampled_features = sample_from_trigrids(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'], triplane_depth=hparams.get("triplane_depth", 1)) elif self.triplane_feature_type == "3dgrid": sampled_features = sample_from_3dgrid(planes, sample_coordinates) out = decoder(sampled_features, sample_coordinates) if options.get('density_noise', 0) > 0: out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] return out def sort_samples(self, all_depths, all_colors, all_densities): _, indices = torch.sort(all_depths, dim=-2) all_depths = torch.gather(all_depths, -2, indices) all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) return all_depths, all_colors, all_densities def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2): all_depths = torch.cat([depths1, depths2], dim = -2) all_colors = torch.cat([colors1, colors2], dim = -2) all_densities = torch.cat([densities1, densities2], dim = -2) _, indices = torch.sort(all_depths, dim=-2) all_depths = torch.gather(all_depths, -2, indices) all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) return all_depths, all_colors, all_densities def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): """ Return depths of approximately uniformly spaced samples along rays. """ N, M, _ = ray_origins.shape if disparity_space_sampling: depths_coarse = torch.linspace(0, 1, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) depth_delta = 1/(depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) else: if type(ray_start) == torch.Tensor: depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) depth_delta = (ray_end - ray_start) / (depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] else: depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) depth_delta = (ray_end - ray_start)/(depth_resolution - 1) depths_coarse += torch.rand_like(depths_coarse) * depth_delta return depths_coarse def sample_importance(self, z_vals, weights, N_importance): """ Return depths of importance sampled points along rays. See NeRF importance sampling for more. """ with torch.no_grad(): batch_size, num_rays, samples_per_ray, _ = z_vals.shape z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher # smooth weights weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1) weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() weights = weights + 0.01 z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], N_importance).detach().reshape(batch_size, num_rays, N_importance, 1) return importance_z_vals def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): """ Sample @N_importance samples from @bins with distribution defined by @weights. Inputs: bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" weights: (N_rays, N_samples_) N_importance: the number of samples to draw from the distribution det: deterministic or not eps: a small number to prevent division by zero Outputs: samples: the sampled samples """ N_rays, N_samples_ = weights.shape if isinstance(N_samples_, torch.Tensor): N_samples_ = N_samples_.to(device=weights.device) if isinstance(N_rays, torch.Tensor): N_rays = N_rays.to(device=weights.device) weights = weights + eps # prevent division by zero (don't do inplace op!) pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_) cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1) # padded to 0~1 inclusive if det: u = torch.linspace(0, 1, N_importance, device=bins.device) u = u.expand(N_rays, N_importance) else: u = torch.rand(N_rays, N_importance, device=bins.device) u = u.contiguous() inds = torch.searchsorted(cdf, u, right=True) below = torch.clamp_min(inds-1, 0) above = torch.clamp_max(inds, N_samples_) inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) denom = cdf_g[...,1]-cdf_g[...,0] denom[denom