# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: LicenseRef-NvidiaProprietary # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import copy import torch import torch.nn as nn from modules.eg3ds.models.networks_stylegan2 import FullyConnectedLayer from modules.eg3ds.volumetric_rendering.renderer import ImportanceRenderer from modules.eg3ds.volumetric_rendering.ray_sampler import RaySampler from modules.eg3ds.models.superresolution import SuperresolutionHybrid2X, SuperresolutionHybrid4X, SuperresolutionHybrid8X, SuperresolutionHybrid8XDC from modules.img2plane.img2plane_model import Img2PlaneModel from utils.commons.hparams import hparams class Img2TriPlaneGenerator(torch.nn.Module): def __init__(self): super().__init__(hp=None) global hparams self.hparams = copy.copy(hparams) if hp is None else copy.copy(hp) hparams = self.hparams self.z_dim = hparams['z_dim'] self.camera_dim = 25 self.w_dim=hparams['w_dim'] self.img_resolution = hparams['final_resolution'] self.img_channels = 3 self.renderer = ImportanceRenderer(hp=hparams) self.ray_sampler = RaySampler() self.neural_rendering_resolution = hparams['neural_rendering_resolution'] self.img2plane_backbone = Img2PlaneModel() self.decoder = OSGDecoder(32, {'decoder_lr_mul': 1, 'decoder_output_dim': 32}) self.rendering_kwargs = {'image_resolution': hparams['final_resolution'], 'disparity_space_sampling': False, 'clamp_mode': 'softplus', 'gpc_reg_prob': hparams['gpc_reg_prob'], 'c_scale': 1.0, 'superresolution_noise_mode': 'none', 'density_reg': hparams['lambda_density_reg'], 'density_reg_p_dist': hparams['density_reg_p_dist'], 'reg_type': 'l1', 'decoder_lr_mul': 1.0, 'sr_antialias': True, 'depth_resolution': hparams['num_samples_coarse'], 'depth_resolution_importance': hparams['num_samples_fine'], 'ray_start': 'auto', 'ray_end': 'auto', # 'ray_start': hparams['ray_near'], 'ray_end': hparams['ray_far'], 'box_warp': 1., # 3DMM坐标系==world坐标系,而3DMM的landmark的坐标均位于[-1,1]内 'avg_camera_radius': 2.7, 'avg_camera_pivot': [0, 0, 0.2], 'white_back': False, } sr_num_fp16_res = hparams['num_fp16_layers_in_super_resolution'] sr_kwargs = {'channel_base': hparams['base_channel'], 'channel_max': hparams['max_channel'], 'fused_modconv_default': 'inference_only'} self.superresolution = SuperresolutionHybrid8XDC(channels=32, img_resolution=self.img_resolution, sr_num_fp16_res=sr_num_fp16_res, sr_antialias=True, **sr_kwargs) def cal_plane(self, img): planes = self.img2plane_backbone.forward(img) planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) return planes def synthesis(self, img, camera, cond=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, **synthesis_kwargs): cam2world_matrix = camera[:, :16].view(-1, 4, 4) intrinsics = camera[:, 16:25].view(-1, 3, 3) neural_rendering_resolution = self.neural_rendering_resolution # Create a batch of rays for volume rendering # ray_origins, ray_directions = self.ray_sampler.forward_with_src_c2w(ref_cam2world_matrix, cam2world_matrix, intrinsics, neural_rendering_resolution) ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution) # Create triplanes by running StyleGAN backbone N, M, _ = ray_origins.shape if use_cached_backbone and self._last_planes is not None: planes = self._last_planes else: planes = self.img2plane_backbone.forward(img) if cache_backbone: self._last_planes = planes # Reshape output into three 32-channel planes planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) # [B, 3, 32, W, H] # Perform volume rendering feature_samples, depth_samples, weights_samples, _ = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) # channels last # Reshape into 'raw' neural-rendered image H = W = self.neural_rendering_resolution feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous() depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W) # Run superresolution to get final image rgb_image = feature_image[:, :3] ws_to_sr = torch.ones([feature_image.shape[0], 14, hparams['w_dim']], dtype=feature_image.dtype, device=feature_image.device) sr_image = self.superresolution(rgb_image, feature_image, ws_to_sr, noise_mode=self.rendering_kwargs['superresolution_noise_mode'], **{k:synthesis_kwargs[k] for k in synthesis_kwargs.keys() if k != 'noise_mode'}) ret = {'image_raw': rgb_image, 'image_depth': depth_image, 'image': sr_image, 'image_feature': feature_image[:, 3:], 'plane': planes} return ret def sample(self, coordinates, directions, img, cond=None, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs): # Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes. planes = self.img2plane_backbone.forward(img, cond=cond) planes = planes.view(len(planes), 3, 32, planes.shape[-2], planes.shape[-1]) return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs) def forward(self, img, camera, cond=None, update_emas=False, cache_backbone=False, use_cached_backbone=False, return_all=True, **synthesis_kwargs): # Render a batch of generated images. out = self.synthesis(img, camera, cond=cond, update_emas=update_emas, cache_backbone=cache_backbone, use_cached_backbone=use_cached_backbone, **synthesis_kwargs) return out class OSGDecoder(torch.nn.Module): def __init__(self, n_features, options): super().__init__() self.hidden_dim = 64 self.net = torch.nn.Sequential( FullyConnectedLayer(n_features, self.hidden_dim, lr_multiplier=options['decoder_lr_mul']), torch.nn.Softplus(), FullyConnectedLayer(self.hidden_dim, 1 + options['decoder_output_dim'], lr_multiplier=options['decoder_lr_mul']) ) def forward(self, sampled_features, ray_directions=None, **kwargs): # Aggregate features if sampled_features.shape[1] == 3: sampled_features = sampled_features.mean(1) x = sampled_features N, M, C = x.shape x = x.reshape(N*M, C) x = self.net(x) x = x.reshape(N, M, -1) rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF sigma = x[..., 0:1] return {'rgb': rgb, 'sigma': sigma}