LiteRT
File size: 15,983 Bytes
a5c5b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
from numpy.core.numeric import require
from numpy.lib.function_base import quantile
import torch
import torch.nn.functional as F
import copy
import numpy as np

import os
import sys
import cv2
import argparse
import tqdm
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
from data_gen.utils.mp_feature_extractors.face_landmarker import MediapipeLandmarker

from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel
import pickle

face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM', 
            camera_distance=10, focal=1015, keypoint_mode='mediapipe')
face_model.to("cuda")
     

index_lm68_from_lm468 = [127,234,93,132,58,136,150,176,152,400,379,365,288,361,323,454,356,70,63,105,66,107,336,296,334,293,300,168,197,5,4,75,97,2,326,305,
                         33,160,158,133,153,144,362,385,387,263,373,380,61,40,37,0,267,270,291,321,314,17,84,91,78,81,13,311,308,402,14,178]

dir_path = os.path.dirname(os.path.realpath(__file__))

LAMBDA_REG_ID = 0.3
LAMBDA_REG_EXP = 0.05

def save_file(name, content):
    with open(name, "wb") as f:
        pickle.dump(content, f) 
        
def load_file(name):
    with open(name, "rb") as f:
        content = pickle.load(f)
    return content

def cal_lan_loss_mp(proj_lan, gt_lan):
    # [B, 68, 2]
    loss = (proj_lan - gt_lan).pow(2)
    # loss = (proj_lan - gt_lan).abs()
    unmatch_mask = [ 93, 127, 132, 234, 323, 356, 361, 454]
    eye = [33,246,161,160,159,158,157,173,133,155,154,153,145,144,163,7] + [263,466,388,387,386,385,384,398,362,382,381,380,374,373,390,249]
    inner_lip = [78,191,80,81,82,13,312,311,310,415,308,324,318,402,317,14,87,178,88,95]
    outer_lip = [61,185,40,39,37,0,267,269,270,409,291,375,321,405,314,17,84,181,91,146]
    weights = torch.ones_like(loss)
    weights[:, eye] = 5
    weights[:, inner_lip] = 2
    weights[:, outer_lip] = 2
    weights[:, unmatch_mask] = 0
    loss = loss * weights
    return torch.mean(loss)
 
def cal_lan_loss(proj_lan, gt_lan):
    # [B, 68, 2]
    loss = (proj_lan - gt_lan)** 2
    # use the ldm weights from deep3drecon, see deep_3drecon/deep_3drecon_models/losses.py
    weights = torch.zeros_like(loss)
    weights = torch.ones_like(loss)
    weights[:, 36:48, :] = 3 # eye 12 points
    weights[:, -8:, :] =  3 # inner lip 8 points
    weights[:, 28:31, :] =  3 # nose 3 points
    loss = loss * weights
    return torch.mean(loss)

def set_requires_grad(tensor_list):
    for tensor in tensor_list:
        tensor.requires_grad = True

def read_video_to_frames(img_name):
    frames = []
    cap = cv2.VideoCapture(img_name)
    while cap.isOpened():
        ret, frame_bgr = cap.read()
        if frame_bgr is None:
            break
        frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
        frames.append(frame_rgb)
    return np.stack(frames)
    
@torch.enable_grad()
def fit_3dmm_for_a_image(img_name, debug=False, keypoint_mode='mediapipe', device="cuda:0", save=True):
    img = cv2.imread(img_name)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img_h, img_w = img.shape[0], img.shape[0]
    assert img_h == img_w
    num_frames = 1

    lm_name = img_name.replace("/images_512/", "/lms_2d/").replace(".png", "_lms.npy")
    if lm_name.endswith('_lms.npy') and os.path.exists(lm_name):
        lms = np.load(lm_name)
    else:
        # print("lms_2d file not found, try to extract it from image...")
        try:
            landmarker = MediapipeLandmarker()
            lms = landmarker.extract_lm478_from_img_name(img_name)
            # lms = landmarker.extract_lm478_from_img(img)
        except Exception as e:
            print(e)
            return
        if lms is None:
            print("get None lms_2d, please check whether each frame has one head, exiting...")
            return
    lms = lms[:468].reshape([468,2])
    lms = torch.FloatTensor(lms).to(device=device)
    lms[..., 1] = img_h - lms[..., 1] # flip the height axis

    if keypoint_mode == 'mediapipe':
        cal_lan_loss_fn = cal_lan_loss_mp
        out_name = img_name.replace("/images_512/", "/coeff_fit_mp/").replace(".png", "_coeff_fit_mp.npy")
    else:
        cal_lan_loss_fn = cal_lan_loss
        out_name = img_name.replace("/images_512/", "/coeff_fit_lm68/").replace(".png", "_coeff_fit_lm68.npy")
    try:
        os.makedirs(os.path.dirname(out_name), exist_ok=True)
    except:
        pass

    id_dim, exp_dim = 80, 64
    sel_ids = np.arange(0, num_frames, 40)
    sel_num = sel_ids.shape[0]
    arg_focal = face_model.focal

    h = w = face_model.center * 2
    img_scale_factor = img_h / h
    lms /= img_scale_factor
    cxy = torch.tensor((w / 2.0, h / 2.0), dtype=torch.float).to(device=device)

    id_para = lms.new_zeros((num_frames, id_dim), requires_grad=True) # lms.new_zeros((1, id_dim), requires_grad=True)
    exp_para = lms.new_zeros((num_frames, exp_dim), requires_grad=True)
    euler_angle = lms.new_zeros((num_frames, 3), requires_grad=True)
    trans = lms.new_zeros((num_frames, 3), requires_grad=True)

    focal_length = lms.new_zeros(1, requires_grad=True)
    focal_length.data += arg_focal

    set_requires_grad([id_para, exp_para, euler_angle, trans])

    optimizer_idexp = torch.optim.Adam([id_para, exp_para], lr=.1)
    optimizer_frame = torch.optim.Adam([euler_angle, trans], lr=.1)

    # 其他参数初始化,先训练euler和trans
    for _ in range(200):
        proj_geo = face_model.compute_for_landmark_fit(
            id_para, exp_para, euler_angle, trans)
        loss_lan = cal_lan_loss_fn(proj_geo[:, :, :2], lms.detach())
        loss = loss_lan
        optimizer_frame.zero_grad()
        loss.backward()
        optimizer_frame.step()
    # print(f"loss_lan: {loss_lan.item():.2f}, euler_abs_mean: {euler_angle.abs().mean().item():.4f}, euler_std: {euler_angle.std().item():.4f}, euler_min: {euler_angle.min().item():.4f}, euler_max: {euler_angle.max().item():.4f}")
    # print(f"trans_z_mean: {trans[...,2].mean().item():.4f}, trans_z_std: {trans[...,2].std().item():.4f}, trans_min: {trans[...,2].min().item():.4f}, trans_max: {trans[...,2].max().item():.4f}")

    for param_group in optimizer_frame.param_groups:
        param_group['lr'] = 0.1

    # "jointly roughly training id exp euler trans"
    for _ in range(200):
        proj_geo = face_model.compute_for_landmark_fit(
            id_para, exp_para, euler_angle, trans)
        loss_lan = cal_lan_loss_fn(
            proj_geo[:, :, :2], lms.detach())
        loss_regid = torch.mean(id_para*id_para) # 正则化
        loss_regexp = torch.mean(exp_para * exp_para)

        loss = loss_lan  + loss_regid * LAMBDA_REG_ID + loss_regexp * LAMBDA_REG_EXP
        optimizer_idexp.zero_grad()
        optimizer_frame.zero_grad()
        loss.backward()
        optimizer_idexp.step()
        optimizer_frame.step()
    # print(f"loss_lan: {loss_lan.item():.2f}, loss_reg_id: {loss_regid.item():.2f},loss_reg_exp: {loss_regexp.item():.2f},")
    # print(f"euler_abs_mean: {euler_angle.abs().mean().item():.4f}, euler_std: {euler_angle.std().item():.4f}, euler_min: {euler_angle.min().item():.4f}, euler_max: {euler_angle.max().item():.4f}")
    # print(f"trans_z_mean: {trans[...,2].mean().item():.4f}, trans_z_std: {trans[...,2].std().item():.4f}, trans_min: {trans[...,2].min().item():.4f}, trans_max: {trans[...,2].max().item():.4f}")

    # start fine training, intialize from the roughly trained results
    id_para_ = lms.new_zeros((num_frames, id_dim), requires_grad=True)
    id_para_.data = id_para.data.clone()
    id_para = id_para_
    exp_para_ = lms.new_zeros((num_frames, exp_dim), requires_grad=True)
    exp_para_.data = exp_para.data.clone()
    exp_para = exp_para_
    euler_angle_ = lms.new_zeros((num_frames, 3), requires_grad=True)
    euler_angle_.data = euler_angle.data.clone()
    euler_angle = euler_angle_
    trans_ = lms.new_zeros((num_frames, 3), requires_grad=True)
    trans_.data = trans.data.clone()
    trans = trans_

    batch_size = 1

    # "fine fitting the 3DMM in batches"
    for i in range(int((num_frames-1)/batch_size+1)):
        if (i+1)*batch_size > num_frames:
            start_n = num_frames-batch_size
            sel_ids = np.arange(max(num_frames-batch_size,0), num_frames)
        else:
            start_n = i*batch_size
            sel_ids = np.arange(i*batch_size, i*batch_size+batch_size)
        sel_lms = lms[sel_ids]

        sel_id_para = id_para.new_zeros(
            (batch_size, id_dim), requires_grad=True)
        sel_id_para.data = id_para[sel_ids].clone()
        sel_exp_para = exp_para.new_zeros(
            (batch_size, exp_dim), requires_grad=True)
        sel_exp_para.data = exp_para[sel_ids].clone()
        sel_euler_angle = euler_angle.new_zeros(
            (batch_size, 3), requires_grad=True)
        sel_euler_angle.data = euler_angle[sel_ids].clone()
        sel_trans = trans.new_zeros((batch_size, 3), requires_grad=True)
        sel_trans.data = trans[sel_ids].clone()
        
        set_requires_grad([sel_id_para, sel_exp_para, sel_euler_angle, sel_trans])
        optimizer_cur_batch = torch.optim.Adam(
            [sel_id_para, sel_exp_para, sel_euler_angle, sel_trans], lr=0.005)

        for j in range(50):
            proj_geo = face_model.compute_for_landmark_fit(
                sel_id_para, sel_exp_para, sel_euler_angle, sel_trans)
            loss_lan = cal_lan_loss_fn(
                proj_geo[:, :, :2], lms.unsqueeze(0).detach())

            loss_regid = torch.mean(sel_id_para*sel_id_para) # 正则化
            loss_regexp = torch.mean(sel_exp_para*sel_exp_para)
            loss = loss_lan + loss_regid * LAMBDA_REG_ID + loss_regexp * LAMBDA_REG_EXP 
            optimizer_cur_batch.zero_grad()
            loss.backward()
            optimizer_cur_batch.step()
        print(f"batch {i} | loss_lan: {loss_lan.item():.2f}, loss_reg_id: {loss_regid.item():.2f},loss_reg_exp: {loss_regexp.item():.2f}")
        id_para[sel_ids].data = sel_id_para.data.clone()
        exp_para[sel_ids].data = sel_exp_para.data.clone()
        euler_angle[sel_ids].data = sel_euler_angle.data.clone()
        trans[sel_ids].data = sel_trans.data.clone()

    coeff_dict = {'id': id_para.detach().cpu().numpy(), 'exp': exp_para.detach().cpu().numpy(),
                'euler': euler_angle.detach().cpu().numpy(), 'trans': trans.detach().cpu().numpy()}
    if save:
        np.save(out_name, coeff_dict, allow_pickle=True)
    
    if debug:
        import imageio
        debug_name = img_name.replace("/images_512/", "/coeff_fit_mp_debug/").replace(".png", "_debug.png").replace(".jpg", "_debug.jpg")
        try: os.makedirs(os.path.dirname(debug_name), exist_ok=True)
        except: pass
        proj_geo = face_model.compute_for_landmark_fit(id_para, exp_para, euler_angle, trans)
        lm68s = proj_geo[:,:,:2].detach().cpu().numpy()  # [T, 68,2]
        lm68s = lm68s * img_scale_factor
        lms = lms * img_scale_factor
        lm68s[..., 1] = img_h - lm68s[..., 1] # flip the height axis
        lms[..., 1] = img_h - lms[..., 1] # flip the height axis
        lm68s = lm68s.astype(int)
        lm68s = lm68s.reshape([-1,2])
        lms = lms.cpu().numpy().astype(int).reshape([-1,2])
        for lm in lm68s:
            img = cv2.circle(img, lm, 1, (0, 0, 255), thickness=-1)
        for gt_lm in lms:
            img = cv2.circle(img, gt_lm, 2, (255, 0, 0), thickness=1)
        imageio.imwrite(debug_name, img)
        print(f"debug img saved at {debug_name}")
    return coeff_dict

def out_exist_job(vid_name):
    out_name = vid_name.replace("/images_512/", "/coeff_fit_mp/").replace(".png","_coeff_fit_mp.npy") 
    # if os.path.exists(out_name) or not os.path.exists(lms_name):
    if os.path.exists(out_name):
        return None
    else:
        return vid_name

def get_todo_img_names(img_names):
    todo_img_names = []
    for i, res in multiprocess_run_tqdm(out_exist_job, img_names, num_workers=16):
        if res is not None:
            todo_img_names.append(res)
    return todo_img_names


if __name__ == '__main__':
    import argparse, glob, tqdm
    parser = argparse.ArgumentParser()
    parser.add_argument("--img_dir", default='/home/tiger/datasets/raw/FFHQ/images_512')
    parser.add_argument("--ds_name", default='FFHQ')
    parser.add_argument("--seed", default=0, type=int)
    parser.add_argument("--process_id", default=0, type=int)
    parser.add_argument("--total_process", default=1, type=int)
    parser.add_argument("--keypoint_mode", default='mediapipe', type=str)
    parser.add_argument("--debug", action='store_true')
    parser.add_argument("--reset", action='store_true')
    parser.add_argument("--device", default="cuda:0", type=str)
    parser.add_argument("--output_log", action='store_true')
    parser.add_argument("--load_names", action="store_true")

    args = parser.parse_args()
    img_dir = args.img_dir
    load_names = args.load_names
    
    print(f"args {args}")
    
    if args.ds_name == 'single_img':
        img_names = [img_dir]
    else:
        img_names_path = os.path.join(img_dir, "img_dir.pkl")
        if os.path.exists(img_names_path) and load_names:
            print(f"loading vid names from {img_names_path}")
            img_names = load_file(img_names_path)
        else:
            if args.ds_name == 'FFHQ_MV':
                img_name_pattern1 = os.path.join(img_dir, "ref_imgs/*.png")
                img_names1 = glob.glob(img_name_pattern1)
                img_name_pattern2 = os.path.join(img_dir, "mv_imgs/*.png")
                img_names2 = glob.glob(img_name_pattern2)
                img_names = img_names1 + img_names2
                img_names = sorted(img_names)
            elif args.ds_name == 'FFHQ':
                img_name_pattern = os.path.join(img_dir, "*.png")
                img_names = glob.glob(img_name_pattern)
                img_names = sorted(img_names)
            elif args.ds_name == "PanoHeadGen":
                img_name_patterns = ["ref/*/*.png"]
                img_names = []
                for img_name_pattern in img_name_patterns:
                    img_name_pattern_full = os.path.join(img_dir, img_name_pattern)
                    img_names_part = glob.glob(img_name_pattern_full)
                    img_names.extend(img_names_part)
                img_names = sorted(img_names)
            print(f"saving image names to {img_names_path}")
            save_file(img_names_path, img_names)
            
    # import random
    # random.seed(args.seed)
    # random.shuffle(img_names)

    face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM', 
                camera_distance=10, focal=1015, keypoint_mode=args.keypoint_mode)
    face_model.to(torch.device(args.device))
     
    process_id = args.process_id
    total_process = args.total_process
    if total_process > 1:
        assert process_id <= total_process -1 and process_id >= 0
        num_samples_per_process = len(img_names) // total_process
        if process_id == total_process:
            img_names = img_names[process_id * num_samples_per_process : ]
        else:
            img_names = img_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process]
    print(f"image names number (before fileter): {len(img_names)}")


    if not args.reset:
        img_names = get_todo_img_names(img_names)

    print(f"image names number (after  fileter): {len(img_names)}")
    for i in tqdm.trange(len(img_names), desc=f"process {process_id}: fitting 3dmm ..."):
        img_name = img_names[i]
        try:
            fit_3dmm_for_a_image(img_name, args.debug, device=args.device)
        except Exception as e:
            print(img_name, e)
        if args.output_log and i % max(int(len(img_names) * 0.003), 1) == 0:
            print(f"process {process_id}: {i + 1} / {len(img_names)} done")
            sys.stdout.flush()
            sys.stderr.flush()
            
    print(f"process {process_id}: fitting 3dmm all done")