File size: 15,983 Bytes
a5c5b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
from numpy.core.numeric import require
from numpy.lib.function_base import quantile
import torch
import torch.nn.functional as F
import copy
import numpy as np
import os
import sys
import cv2
import argparse
import tqdm
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
from data_gen.utils.mp_feature_extractors.face_landmarker import MediapipeLandmarker
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel
import pickle
face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM',
camera_distance=10, focal=1015, keypoint_mode='mediapipe')
face_model.to("cuda")
index_lm68_from_lm468 = [127,234,93,132,58,136,150,176,152,400,379,365,288,361,323,454,356,70,63,105,66,107,336,296,334,293,300,168,197,5,4,75,97,2,326,305,
33,160,158,133,153,144,362,385,387,263,373,380,61,40,37,0,267,270,291,321,314,17,84,91,78,81,13,311,308,402,14,178]
dir_path = os.path.dirname(os.path.realpath(__file__))
LAMBDA_REG_ID = 0.3
LAMBDA_REG_EXP = 0.05
def save_file(name, content):
with open(name, "wb") as f:
pickle.dump(content, f)
def load_file(name):
with open(name, "rb") as f:
content = pickle.load(f)
return content
def cal_lan_loss_mp(proj_lan, gt_lan):
# [B, 68, 2]
loss = (proj_lan - gt_lan).pow(2)
# loss = (proj_lan - gt_lan).abs()
unmatch_mask = [ 93, 127, 132, 234, 323, 356, 361, 454]
eye = [33,246,161,160,159,158,157,173,133,155,154,153,145,144,163,7] + [263,466,388,387,386,385,384,398,362,382,381,380,374,373,390,249]
inner_lip = [78,191,80,81,82,13,312,311,310,415,308,324,318,402,317,14,87,178,88,95]
outer_lip = [61,185,40,39,37,0,267,269,270,409,291,375,321,405,314,17,84,181,91,146]
weights = torch.ones_like(loss)
weights[:, eye] = 5
weights[:, inner_lip] = 2
weights[:, outer_lip] = 2
weights[:, unmatch_mask] = 0
loss = loss * weights
return torch.mean(loss)
def cal_lan_loss(proj_lan, gt_lan):
# [B, 68, 2]
loss = (proj_lan - gt_lan)** 2
# use the ldm weights from deep3drecon, see deep_3drecon/deep_3drecon_models/losses.py
weights = torch.zeros_like(loss)
weights = torch.ones_like(loss)
weights[:, 36:48, :] = 3 # eye 12 points
weights[:, -8:, :] = 3 # inner lip 8 points
weights[:, 28:31, :] = 3 # nose 3 points
loss = loss * weights
return torch.mean(loss)
def set_requires_grad(tensor_list):
for tensor in tensor_list:
tensor.requires_grad = True
def read_video_to_frames(img_name):
frames = []
cap = cv2.VideoCapture(img_name)
while cap.isOpened():
ret, frame_bgr = cap.read()
if frame_bgr is None:
break
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
frames.append(frame_rgb)
return np.stack(frames)
@torch.enable_grad()
def fit_3dmm_for_a_image(img_name, debug=False, keypoint_mode='mediapipe', device="cuda:0", save=True):
img = cv2.imread(img_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_h, img_w = img.shape[0], img.shape[0]
assert img_h == img_w
num_frames = 1
lm_name = img_name.replace("/images_512/", "/lms_2d/").replace(".png", "_lms.npy")
if lm_name.endswith('_lms.npy') and os.path.exists(lm_name):
lms = np.load(lm_name)
else:
# print("lms_2d file not found, try to extract it from image...")
try:
landmarker = MediapipeLandmarker()
lms = landmarker.extract_lm478_from_img_name(img_name)
# lms = landmarker.extract_lm478_from_img(img)
except Exception as e:
print(e)
return
if lms is None:
print("get None lms_2d, please check whether each frame has one head, exiting...")
return
lms = lms[:468].reshape([468,2])
lms = torch.FloatTensor(lms).to(device=device)
lms[..., 1] = img_h - lms[..., 1] # flip the height axis
if keypoint_mode == 'mediapipe':
cal_lan_loss_fn = cal_lan_loss_mp
out_name = img_name.replace("/images_512/", "/coeff_fit_mp/").replace(".png", "_coeff_fit_mp.npy")
else:
cal_lan_loss_fn = cal_lan_loss
out_name = img_name.replace("/images_512/", "/coeff_fit_lm68/").replace(".png", "_coeff_fit_lm68.npy")
try:
os.makedirs(os.path.dirname(out_name), exist_ok=True)
except:
pass
id_dim, exp_dim = 80, 64
sel_ids = np.arange(0, num_frames, 40)
sel_num = sel_ids.shape[0]
arg_focal = face_model.focal
h = w = face_model.center * 2
img_scale_factor = img_h / h
lms /= img_scale_factor
cxy = torch.tensor((w / 2.0, h / 2.0), dtype=torch.float).to(device=device)
id_para = lms.new_zeros((num_frames, id_dim), requires_grad=True) # lms.new_zeros((1, id_dim), requires_grad=True)
exp_para = lms.new_zeros((num_frames, exp_dim), requires_grad=True)
euler_angle = lms.new_zeros((num_frames, 3), requires_grad=True)
trans = lms.new_zeros((num_frames, 3), requires_grad=True)
focal_length = lms.new_zeros(1, requires_grad=True)
focal_length.data += arg_focal
set_requires_grad([id_para, exp_para, euler_angle, trans])
optimizer_idexp = torch.optim.Adam([id_para, exp_para], lr=.1)
optimizer_frame = torch.optim.Adam([euler_angle, trans], lr=.1)
# 其他参数初始化,先训练euler和trans
for _ in range(200):
proj_geo = face_model.compute_for_landmark_fit(
id_para, exp_para, euler_angle, trans)
loss_lan = cal_lan_loss_fn(proj_geo[:, :, :2], lms.detach())
loss = loss_lan
optimizer_frame.zero_grad()
loss.backward()
optimizer_frame.step()
# print(f"loss_lan: {loss_lan.item():.2f}, euler_abs_mean: {euler_angle.abs().mean().item():.4f}, euler_std: {euler_angle.std().item():.4f}, euler_min: {euler_angle.min().item():.4f}, euler_max: {euler_angle.max().item():.4f}")
# print(f"trans_z_mean: {trans[...,2].mean().item():.4f}, trans_z_std: {trans[...,2].std().item():.4f}, trans_min: {trans[...,2].min().item():.4f}, trans_max: {trans[...,2].max().item():.4f}")
for param_group in optimizer_frame.param_groups:
param_group['lr'] = 0.1
# "jointly roughly training id exp euler trans"
for _ in range(200):
proj_geo = face_model.compute_for_landmark_fit(
id_para, exp_para, euler_angle, trans)
loss_lan = cal_lan_loss_fn(
proj_geo[:, :, :2], lms.detach())
loss_regid = torch.mean(id_para*id_para) # 正则化
loss_regexp = torch.mean(exp_para * exp_para)
loss = loss_lan + loss_regid * LAMBDA_REG_ID + loss_regexp * LAMBDA_REG_EXP
optimizer_idexp.zero_grad()
optimizer_frame.zero_grad()
loss.backward()
optimizer_idexp.step()
optimizer_frame.step()
# print(f"loss_lan: {loss_lan.item():.2f}, loss_reg_id: {loss_regid.item():.2f},loss_reg_exp: {loss_regexp.item():.2f},")
# print(f"euler_abs_mean: {euler_angle.abs().mean().item():.4f}, euler_std: {euler_angle.std().item():.4f}, euler_min: {euler_angle.min().item():.4f}, euler_max: {euler_angle.max().item():.4f}")
# print(f"trans_z_mean: {trans[...,2].mean().item():.4f}, trans_z_std: {trans[...,2].std().item():.4f}, trans_min: {trans[...,2].min().item():.4f}, trans_max: {trans[...,2].max().item():.4f}")
# start fine training, intialize from the roughly trained results
id_para_ = lms.new_zeros((num_frames, id_dim), requires_grad=True)
id_para_.data = id_para.data.clone()
id_para = id_para_
exp_para_ = lms.new_zeros((num_frames, exp_dim), requires_grad=True)
exp_para_.data = exp_para.data.clone()
exp_para = exp_para_
euler_angle_ = lms.new_zeros((num_frames, 3), requires_grad=True)
euler_angle_.data = euler_angle.data.clone()
euler_angle = euler_angle_
trans_ = lms.new_zeros((num_frames, 3), requires_grad=True)
trans_.data = trans.data.clone()
trans = trans_
batch_size = 1
# "fine fitting the 3DMM in batches"
for i in range(int((num_frames-1)/batch_size+1)):
if (i+1)*batch_size > num_frames:
start_n = num_frames-batch_size
sel_ids = np.arange(max(num_frames-batch_size,0), num_frames)
else:
start_n = i*batch_size
sel_ids = np.arange(i*batch_size, i*batch_size+batch_size)
sel_lms = lms[sel_ids]
sel_id_para = id_para.new_zeros(
(batch_size, id_dim), requires_grad=True)
sel_id_para.data = id_para[sel_ids].clone()
sel_exp_para = exp_para.new_zeros(
(batch_size, exp_dim), requires_grad=True)
sel_exp_para.data = exp_para[sel_ids].clone()
sel_euler_angle = euler_angle.new_zeros(
(batch_size, 3), requires_grad=True)
sel_euler_angle.data = euler_angle[sel_ids].clone()
sel_trans = trans.new_zeros((batch_size, 3), requires_grad=True)
sel_trans.data = trans[sel_ids].clone()
set_requires_grad([sel_id_para, sel_exp_para, sel_euler_angle, sel_trans])
optimizer_cur_batch = torch.optim.Adam(
[sel_id_para, sel_exp_para, sel_euler_angle, sel_trans], lr=0.005)
for j in range(50):
proj_geo = face_model.compute_for_landmark_fit(
sel_id_para, sel_exp_para, sel_euler_angle, sel_trans)
loss_lan = cal_lan_loss_fn(
proj_geo[:, :, :2], lms.unsqueeze(0).detach())
loss_regid = torch.mean(sel_id_para*sel_id_para) # 正则化
loss_regexp = torch.mean(sel_exp_para*sel_exp_para)
loss = loss_lan + loss_regid * LAMBDA_REG_ID + loss_regexp * LAMBDA_REG_EXP
optimizer_cur_batch.zero_grad()
loss.backward()
optimizer_cur_batch.step()
print(f"batch {i} | loss_lan: {loss_lan.item():.2f}, loss_reg_id: {loss_regid.item():.2f},loss_reg_exp: {loss_regexp.item():.2f}")
id_para[sel_ids].data = sel_id_para.data.clone()
exp_para[sel_ids].data = sel_exp_para.data.clone()
euler_angle[sel_ids].data = sel_euler_angle.data.clone()
trans[sel_ids].data = sel_trans.data.clone()
coeff_dict = {'id': id_para.detach().cpu().numpy(), 'exp': exp_para.detach().cpu().numpy(),
'euler': euler_angle.detach().cpu().numpy(), 'trans': trans.detach().cpu().numpy()}
if save:
np.save(out_name, coeff_dict, allow_pickle=True)
if debug:
import imageio
debug_name = img_name.replace("/images_512/", "/coeff_fit_mp_debug/").replace(".png", "_debug.png").replace(".jpg", "_debug.jpg")
try: os.makedirs(os.path.dirname(debug_name), exist_ok=True)
except: pass
proj_geo = face_model.compute_for_landmark_fit(id_para, exp_para, euler_angle, trans)
lm68s = proj_geo[:,:,:2].detach().cpu().numpy() # [T, 68,2]
lm68s = lm68s * img_scale_factor
lms = lms * img_scale_factor
lm68s[..., 1] = img_h - lm68s[..., 1] # flip the height axis
lms[..., 1] = img_h - lms[..., 1] # flip the height axis
lm68s = lm68s.astype(int)
lm68s = lm68s.reshape([-1,2])
lms = lms.cpu().numpy().astype(int).reshape([-1,2])
for lm in lm68s:
img = cv2.circle(img, lm, 1, (0, 0, 255), thickness=-1)
for gt_lm in lms:
img = cv2.circle(img, gt_lm, 2, (255, 0, 0), thickness=1)
imageio.imwrite(debug_name, img)
print(f"debug img saved at {debug_name}")
return coeff_dict
def out_exist_job(vid_name):
out_name = vid_name.replace("/images_512/", "/coeff_fit_mp/").replace(".png","_coeff_fit_mp.npy")
# if os.path.exists(out_name) or not os.path.exists(lms_name):
if os.path.exists(out_name):
return None
else:
return vid_name
def get_todo_img_names(img_names):
todo_img_names = []
for i, res in multiprocess_run_tqdm(out_exist_job, img_names, num_workers=16):
if res is not None:
todo_img_names.append(res)
return todo_img_names
if __name__ == '__main__':
import argparse, glob, tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--img_dir", default='/home/tiger/datasets/raw/FFHQ/images_512')
parser.add_argument("--ds_name", default='FFHQ')
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--process_id", default=0, type=int)
parser.add_argument("--total_process", default=1, type=int)
parser.add_argument("--keypoint_mode", default='mediapipe', type=str)
parser.add_argument("--debug", action='store_true')
parser.add_argument("--reset", action='store_true')
parser.add_argument("--device", default="cuda:0", type=str)
parser.add_argument("--output_log", action='store_true')
parser.add_argument("--load_names", action="store_true")
args = parser.parse_args()
img_dir = args.img_dir
load_names = args.load_names
print(f"args {args}")
if args.ds_name == 'single_img':
img_names = [img_dir]
else:
img_names_path = os.path.join(img_dir, "img_dir.pkl")
if os.path.exists(img_names_path) and load_names:
print(f"loading vid names from {img_names_path}")
img_names = load_file(img_names_path)
else:
if args.ds_name == 'FFHQ_MV':
img_name_pattern1 = os.path.join(img_dir, "ref_imgs/*.png")
img_names1 = glob.glob(img_name_pattern1)
img_name_pattern2 = os.path.join(img_dir, "mv_imgs/*.png")
img_names2 = glob.glob(img_name_pattern2)
img_names = img_names1 + img_names2
img_names = sorted(img_names)
elif args.ds_name == 'FFHQ':
img_name_pattern = os.path.join(img_dir, "*.png")
img_names = glob.glob(img_name_pattern)
img_names = sorted(img_names)
elif args.ds_name == "PanoHeadGen":
img_name_patterns = ["ref/*/*.png"]
img_names = []
for img_name_pattern in img_name_patterns:
img_name_pattern_full = os.path.join(img_dir, img_name_pattern)
img_names_part = glob.glob(img_name_pattern_full)
img_names.extend(img_names_part)
img_names = sorted(img_names)
print(f"saving image names to {img_names_path}")
save_file(img_names_path, img_names)
# import random
# random.seed(args.seed)
# random.shuffle(img_names)
face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM',
camera_distance=10, focal=1015, keypoint_mode=args.keypoint_mode)
face_model.to(torch.device(args.device))
process_id = args.process_id
total_process = args.total_process
if total_process > 1:
assert process_id <= total_process -1 and process_id >= 0
num_samples_per_process = len(img_names) // total_process
if process_id == total_process:
img_names = img_names[process_id * num_samples_per_process : ]
else:
img_names = img_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process]
print(f"image names number (before fileter): {len(img_names)}")
if not args.reset:
img_names = get_todo_img_names(img_names)
print(f"image names number (after fileter): {len(img_names)}")
for i in tqdm.trange(len(img_names), desc=f"process {process_id}: fitting 3dmm ..."):
img_name = img_names[i]
try:
fit_3dmm_for_a_image(img_name, args.debug, device=args.device)
except Exception as e:
print(img_name, e)
if args.output_log and i % max(int(len(img_names) * 0.003), 1) == 0:
print(f"process {process_id}: {i + 1} / {len(img_names)} done")
sys.stdout.flush()
sys.stderr.flush()
print(f"process {process_id}: fitting 3dmm all done")
|