File size: 22,660 Bytes
a5c5b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import os
os.environ["OMP_NUM_THREADS"] = "1"
import random
import glob
import cv2
import tqdm
import numpy as np
import PIL
from utils.commons.tensor_utils import convert_to_np
from utils.commons.os_utils import multiprocess_glob
import pickle
import torch
import mediapipe as mp
import traceback
import multiprocessing
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
from scipy.ndimage import binary_erosion, binary_dilation
from sklearn.neighbors import NearestNeighbors
from mediapipe.tasks.python import vision
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter, encode_segmap_mask_to_image, decode_segmap_mask_from_image
seg_model = None
segmenter = None
mat_model = None
lama_model = None
lama_config = None
from data_gen.utils.process_video.split_video_to_imgs import extract_img_job
BG_NAME_MAP = {
"knn": "",
"mat": "_mat",
"ddnm": "_ddnm",
"lama": "_lama",
}
FRAME_SELECT_INTERVAL = 5
SIM_METHOD = "mse"
SIM_THRESHOLD = 3
def save_file(name, content):
with open(name, "wb") as f:
pickle.dump(content, f)
def load_file(name):
with open(name, "rb") as f:
content = pickle.load(f)
return content
def save_rgb_alpha_image_to_path(img, alpha, img_path):
try: os.makedirs(os.path.dirname(img_path), exist_ok=True)
except: pass
cv2.imwrite(img_path, np.concatenate([cv2.cvtColor(img, cv2.COLOR_RGB2BGR), alpha], axis=-1))
def save_rgb_image_to_path(img, img_path):
try: os.makedirs(os.path.dirname(img_path), exist_ok=True)
except: pass
cv2.imwrite(img_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
def load_rgb_image_to_path(img_path):
return cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
def image_similarity(x: np.ndarray, y: np.ndarray, method="mse"):
if method == "mse":
return np.mean((x - y) ** 2)
else:
raise NotImplementedError
def extract_background(img_lst, segmap_mask_lst=None, method="knn", device='cpu', mix_bg=True):
"""
img_lst: list of rgb ndarray
method: "knn", "mat" or "ddnm"
"""
# only use 1/20 images
global segmenter
global seg_model
global mat_model
global lama_model
global lama_config
assert len(img_lst) > 0
if segmap_mask_lst is not None:
assert len(segmap_mask_lst) == len(img_lst)
else:
del segmenter
del seg_model
seg_model = MediapipeSegmenter()
segmenter = vision.ImageSegmenter.create_from_options(seg_model.video_options)
def get_segmap_mask(img_lst, segmap_mask_lst, index):
if segmap_mask_lst is not None:
segmap = segmap_mask_lst[index]
else:
segmap = seg_model._cal_seg_map(img_lst[index], segmenter=segmenter)
return segmap
if method == "knn":
num_frames = len(img_lst)
img_lst = img_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else img_lst[0:1]
if segmap_mask_lst is not None:
segmap_mask_lst = segmap_mask_lst[::FRAME_SELECT_INTERVAL] if num_frames > FRAME_SELECT_INTERVAL else segmap_mask_lst[0:1]
assert len(img_lst) == len(segmap_mask_lst)
# get H/W
h, w = img_lst[0].shape[:2]
# nearest neighbors
all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose() # [512*512, 2] coordinate grid
distss = []
for idx, img in enumerate(img_lst):
segmap = get_segmap_mask(img_lst=img_lst, segmap_mask_lst=segmap_mask_lst, index=idx)
bg = (segmap[0]).astype(bool) # [h,w] bool mask
fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0) # [N_nonbg,2] coordinate of non-bg pixels
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
dists, _ = nbrs.kneighbors(all_xys) # [512*512, 1] distance to nearest non-bg pixel
distss.append(dists)
distss = np.stack(distss) # [B, 512*512, 1]
max_dist = np.max(distss, 0) # [512*512, 1]
max_id = np.argmax(distss, 0) # id of frame
bc_pixs = max_dist > 10 # 在各个frame有一个出现过是bg的pixel,bg标准是离最近的non-bg pixel距离大于10
bc_pixs_id = np.nonzero(bc_pixs)
bc_ids = max_id[bc_pixs]
num_pixs = distss.shape[1]
imgs = np.stack(img_lst).reshape(-1, num_pixs, 3)
bg_img = np.zeros((h*w, 3), dtype=np.uint8)
bg_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :] # 对那些铁bg的pixel,直接去对应的image里面采样
bg_img = bg_img.reshape(h, w, 3)
max_dist = max_dist.reshape(h, w)
bc_pixs = max_dist > 10 # 5
bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose()
fg_xys = np.stack(np.nonzero(bc_pixs)).transpose()
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
distances, indices = nbrs.kneighbors(bg_xys) # 对non-bg img,用KNN找最近的bg pixel
bg_fg_xys = fg_xys[indices[:, 0]]
bg_img[bg_xys[:, 0], bg_xys[:, 1], :] = bg_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :]
else:
raise NotImplementedError # deperated
return bg_img
def inpaint_torso_job(gt_img, segmap):
bg_part = (segmap[0]).astype(bool)
head_part = (segmap[1] + segmap[3] + segmap[5]).astype(bool)
neck_part = (segmap[2]).astype(bool)
torso_part = (segmap[4]).astype(bool)
img = gt_img.copy()
img[head_part] = 0
# torso part "vertical" in-painting...
L = 8 + 1
torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2]
# lexsort: sort 2D coords first by y then by x,
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1]))
torso_coords = torso_coords[inds]
# choose the top pixel for each column
u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True)
top_torso_coords = torso_coords[uid] # [m, 2]
# only keep top-is-head pixels
top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0]) # [N, 2]
mask = head_part[tuple(top_torso_coords_up.T)]
if mask.any():
top_torso_coords = top_torso_coords[mask]
# get the color
top_torso_colors = gt_img[tuple(top_torso_coords.T)] # [m, 3]
# construct inpaint coords (vertically up, or minus in x)
inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2]
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
inpaint_torso_coords += inpaint_offsets
inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2]
inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3]
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
# set color
img[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors
inpaint_torso_mask = np.zeros_like(img[..., 0]).astype(bool)
inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True
else:
inpaint_torso_mask = None
# neck part "vertical" in-painting...
push_down = 4
L = 48 + push_down + 1
neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3)
neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2]
# lexsort: sort 2D coords first by y then by x,
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1]))
neck_coords = neck_coords[inds]
# choose the top pixel for each column
u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True)
top_neck_coords = neck_coords[uid] # [m, 2]
# only keep top-is-head pixels
top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0])
mask = head_part[tuple(top_neck_coords_up.T)]
top_neck_coords = top_neck_coords[mask]
# push these top down for 4 pixels to make the neck inpainting more natural...
offset_down = np.minimum(ucnt[mask] - 1, push_down)
top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1)
# get the color
top_neck_colors = gt_img[tuple(top_neck_coords.T)] # [m, 3]
# construct inpaint coords (vertically up, or minus in x)
inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2]
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
inpaint_neck_coords += inpaint_offsets
inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2]
inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3]
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
# set color
img[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors
# apply blurring to the inpaint area to avoid vertical-line artifects...
inpaint_mask = np.zeros_like(img[..., 0]).astype(bool)
inpaint_mask[tuple(inpaint_neck_coords.T)] = True
blur_img = img.copy()
blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT)
img[inpaint_mask] = blur_img[inpaint_mask]
# set mask
torso_img_mask = (neck_part | torso_part | inpaint_mask)
torso_with_bg_img_mask = (bg_part | neck_part | torso_part | inpaint_mask)
if inpaint_torso_mask is not None:
torso_img_mask = torso_img_mask | inpaint_torso_mask
torso_with_bg_img_mask = torso_with_bg_img_mask | inpaint_torso_mask
torso_img = img.copy()
torso_img[~torso_img_mask] = 0
torso_with_bg_img = img.copy()
torso_img[~torso_with_bg_img_mask] = 0
return torso_img, torso_img_mask, torso_with_bg_img, torso_with_bg_img_mask
def extract_segment_job(video_name, nerf=False, idx=None, total=None, background_method='knn', device="cpu", total_gpus=0, mix_bg=True):
global segmenter
global seg_model
del segmenter
del seg_model
seg_model = MediapipeSegmenter()
segmenter = vision.ImageSegmenter.create_from_options(seg_model.video_options)
try:
if "cuda" in device:
# determine which cuda index from subprocess id
pname = multiprocessing.current_process().name
pid = int(pname.rsplit("-", 1)[-1]) - 1
cuda_id = pid % total_gpus
device = f"cuda:{cuda_id}"
if nerf: # single video
raw_img_dir = video_name.replace(".mp4", "/gt_imgs/").replace("/raw/","/processed/")
else: # whole dataset
raw_img_dir = video_name.replace(".mp4", "").replace("/video/", "/gt_imgs/")
if not os.path.exists(raw_img_dir):
extract_img_job(video_name, raw_img_dir) # use ffmpeg to split video into imgs
img_names = glob.glob(os.path.join(raw_img_dir, "*.jpg"))
img_lst = []
for img_name in img_names:
img = cv2.imread(img_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_lst.append(img)
segmap_mask_lst, segmap_image_lst = seg_model._cal_seg_map_for_video(img_lst, segmenter=segmenter, return_onehot_mask=True, return_segmap_image=True)
del segmap_image_lst
# for i in range(len(img_lst)):
for i in tqdm.trange(len(img_lst), desc='generating segment images using segmaps...'):
img_name = img_names[i]
segmap = segmap_mask_lst[i]
img = img_lst[i]
out_img_name = img_name.replace("/gt_imgs/", "/segmaps/").replace(".jpg", ".png") # 存成jpg的话,pixel value会有误差
try: os.makedirs(os.path.dirname(out_img_name), exist_ok=True)
except: pass
encoded_segmap = encode_segmap_mask_to_image(segmap)
save_rgb_image_to_path(encoded_segmap, out_img_name)
for mode in ['head', 'torso', 'person', 'bg']:
out_img, mask = seg_model._seg_out_img_with_segmap(img, segmap, mode=mode)
img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha
mask = mask[0][..., None]
img_alpha[~mask] = 0
out_img_name = img_name.replace("/gt_imgs/", f"/{mode}_imgs/").replace(".jpg", ".png")
save_rgb_alpha_image_to_path(out_img, img_alpha, out_img_name)
inpaint_torso_img, inpaint_torso_img_mask, inpaint_torso_with_bg_img, inpaint_torso_with_bg_img_mask = inpaint_torso_job(img, segmap)
img_alpha = 255 * np.ones((img.shape[0], img.shape[1], 1), dtype=np.uint8) # alpha
img_alpha[~inpaint_torso_img_mask[..., None]] = 0
out_img_name = img_name.replace("/gt_imgs/", f"/inpaint_torso_imgs/").replace(".jpg", ".png")
save_rgb_alpha_image_to_path(inpaint_torso_img, img_alpha, out_img_name)
bg_prefix_name = f"bg{BG_NAME_MAP[background_method]}"
bg_img = extract_background(img_lst, segmap_mask_lst, method=background_method, device=device, mix_bg=mix_bg)
if nerf:
out_img_name = video_name.replace("/raw/", "/processed/").replace(".mp4", f"/{bg_prefix_name}.jpg")
else:
out_img_name = video_name.replace("/video/", f"/{bg_prefix_name}_img/").replace(".mp4", ".jpg")
save_rgb_image_to_path(bg_img, out_img_name)
com_prefix_name = f"com{BG_NAME_MAP[background_method]}"
for i, img_name in enumerate(img_names):
com_img = img_lst[i].copy()
segmap = segmap_mask_lst[i]
bg_part = segmap[0].astype(bool)[..., None].repeat(3,axis=-1)
com_img[bg_part] = bg_img[bg_part]
out_img_name = img_name.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
save_rgb_image_to_path(com_img, out_img_name)
return 0
except Exception as e:
print(str(type(e)), e)
traceback.print_exc(e)
return 1
# def check_bg_img_job_finished(raw_img_dir, bg_name, com_dir):
# img_names = glob.glob(os.path.join(raw_img_dir, "*.jpg"))
# com_names = glob.glob(os.path.join(com_dir, "*.jpg"))
# return len(img_names) == len(com_names) and os.path.exists(bg_name)
# extract background and combined image
# need pre-processed "gt_imgs" and "segmaps"
def extract_bg_img_job(video_name, nerf=False, idx=None, total=None, background_method='knn', device="cpu", total_gpus=0, mix_bg=True):
try:
bg_prefix_name = f"bg{BG_NAME_MAP[background_method]}"
com_prefix_name = f"com{BG_NAME_MAP[background_method]}"
if "cuda" in device:
# determine which cuda index from subprocess id
pname = multiprocessing.current_process().name
pid = int(pname.rsplit("-", 1)[-1]) - 1
cuda_id = pid % total_gpus
device = f"cuda:{cuda_id}"
if nerf: # single video
raw_img_dir = video_name.replace(".mp4", "/gt_imgs/").replace("/raw/","/processed/")
else: # whole dataset
raw_img_dir = video_name.replace(".mp4", "").replace("/video/", "/gt_imgs/")
if nerf:
bg_name = video_name.replace("/raw/", "/processed/").replace(".mp4", f"/{bg_prefix_name}.jpg")
else:
bg_name = video_name.replace("/video/", f"/{bg_prefix_name}_img/").replace(".mp4", ".jpg")
# com_dir = raw_img_dir.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
# if check_bg_img_job_finished(raw_img_dir=raw_img_dir, bg_name=bg_name, com_dir=com_dir):
# print(f"Already finished, skip {raw_img_dir} ")
# return 0
img_names = glob.glob(os.path.join(raw_img_dir, "*.jpg"))
img_lst = []
for img_name in img_names:
img = cv2.imread(img_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_lst.append(img)
segmap_mask_lst = []
for img_name in img_names:
segmap_img_name = img_name.replace("/gt_imgs/", "/segmaps/").replace(".jpg", ".png")
segmap_img = load_rgb_image_to_path(segmap_img_name)
segmap_mask = decode_segmap_mask_from_image(segmap_img)
segmap_mask_lst.append(segmap_mask)
bg_img = extract_background(img_lst, segmap_mask_lst, method=background_method, device=device, mix_bg=mix_bg)
save_rgb_image_to_path(bg_img, bg_name)
for i, img_name in enumerate(img_names):
com_img = img_lst[i].copy()
segmap = segmap_mask_lst[i]
bg_part = segmap[0].astype(bool)[..., None].repeat(3, axis=-1)
com_img[bg_part] = bg_img[bg_part]
com_name = img_name.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
save_rgb_image_to_path(com_img, com_name)
return 0
except Exception as e:
print(str(type(e)), e)
traceback.print_exc(e)
return 1
def out_exist_job(vid_name, background_method='knn', only_bg_img=False):
com_prefix_name = f"com{BG_NAME_MAP[background_method]}"
img_dir = vid_name.replace("/video/", "/gt_imgs/").replace(".mp4", "")
out_dir1 = img_dir.replace("/gt_imgs/", "/head_imgs/")
out_dir2 = img_dir.replace("/gt_imgs/", f"/{com_prefix_name}_imgs/")
if not only_bg_img:
if os.path.exists(img_dir) and os.path.exists(out_dir1) and os.path.exists(out_dir1) and os.path.exists(out_dir2) :
num_frames = len(os.listdir(img_dir))
if len(os.listdir(out_dir1)) == num_frames and len(os.listdir(out_dir2)) == num_frames:
return None
else:
return vid_name
else:
return vid_name
else:
if os.path.exists(img_dir) and os.path.exists(out_dir2):
num_frames = len(os.listdir(img_dir))
if len(os.listdir(out_dir2)) == num_frames:
return None
else:
return vid_name
else:
return vid_name
def get_todo_vid_names(vid_names, background_method='knn', only_bg_img=False):
if len(vid_names) == 1: # nerf
return vid_names
todo_vid_names = []
fn_args = [(vid_name, background_method, only_bg_img) for vid_name in vid_names]
for i, res in multiprocess_run_tqdm(out_exist_job, fn_args, num_workers=16, desc="checking todo videos..."):
if res is not None:
todo_vid_names.append(res)
return todo_vid_names
if __name__ == '__main__':
import argparse, glob, tqdm, random
parser = argparse.ArgumentParser()
parser.add_argument("--vid_dir", default='/home/tiger/datasets/raw/CelebV-HQ/video')
parser.add_argument("--ds_name", default='CelebV-HQ')
parser.add_argument("--num_workers", default=48, type=int)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--process_id", default=0, type=int)
parser.add_argument("--total_process", default=1, type=int)
parser.add_argument("--reset", action='store_true')
parser.add_argument("--load_names", action="store_true")
parser.add_argument("--background_method", choices=['knn', 'mat', 'ddnm', 'lama'], type=str, default='knn')
parser.add_argument("--total_gpus", default=0, type=int) # zero gpus means utilizing cpu
parser.add_argument("--only_bg_img", action="store_true")
parser.add_argument("--no_mix_bg", action="store_true")
args = parser.parse_args()
vid_dir = args.vid_dir
ds_name = args.ds_name
load_names = args.load_names
background_method = args.background_method
total_gpus = args.total_gpus
only_bg_img = args.only_bg_img
mix_bg = not args.no_mix_bg
devices = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(",")
for d in devices[:total_gpus]:
os.system(f'pkill -f "voidgpu{d}"')
if ds_name.lower() == 'nerf': # 处理单个视频
vid_names = [vid_dir]
out_names = [video_name.replace("/raw/", "/processed/").replace(".mp4","_lms.npy") for video_name in vid_names]
else: # 处理整个数据集
if ds_name in ['lrs3_trainval']:
vid_name_pattern = os.path.join(vid_dir, "*/*.mp4")
elif ds_name in ['TH1KH_512', 'CelebV-HQ']:
vid_name_pattern = os.path.join(vid_dir, "*.mp4")
elif ds_name in ['lrs2', 'lrs3', 'voxceleb2']:
vid_name_pattern = os.path.join(vid_dir, "*/*/*.mp4")
elif ds_name in ["RAVDESS", 'VFHQ']:
vid_name_pattern = os.path.join(vid_dir, "*/*/*/*.mp4")
else:
raise NotImplementedError()
vid_names_path = os.path.join(vid_dir, "vid_names.pkl")
if os.path.exists(vid_names_path) and load_names:
print(f"loading vid names from {vid_names_path}")
vid_names = load_file(vid_names_path)
else:
vid_names = multiprocess_glob(vid_name_pattern)
vid_names = sorted(vid_names)
print(f"saving vid names to {vid_names_path}")
save_file(vid_names_path, vid_names)
vid_names = sorted(vid_names)
random.seed(args.seed)
random.shuffle(vid_names)
process_id = args.process_id
total_process = args.total_process
if total_process > 1:
assert process_id <= total_process -1
num_samples_per_process = len(vid_names) // total_process
if process_id == total_process:
vid_names = vid_names[process_id * num_samples_per_process : ]
else:
vid_names = vid_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process]
if not args.reset:
vid_names = get_todo_vid_names(vid_names, background_method, only_bg_img)
print(f"todo videos number: {len(vid_names)}")
# exit()
device = "cuda" if total_gpus > 0 else "cpu"
if only_bg_img:
extract_job = extract_bg_img_job
fn_args = [(vid_name,ds_name=='nerf',i,len(vid_names), background_method, device, total_gpus, mix_bg) for i, vid_name in enumerate(vid_names)]
else:
extract_job = extract_segment_job
fn_args = [(vid_name,ds_name=='nerf',i,len(vid_names), background_method, device, total_gpus, mix_bg) for i, vid_name in enumerate(vid_names)]
for vid_name in multiprocess_run_tqdm(extract_job, fn_args, desc=f"Root process {args.process_id}: segment images", num_workers=args.num_workers):
pass |