File size: 25,851 Bytes
a5c5b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
# This is a script for efficienct 3DMM coefficient extraction.
# It could reconstruct accurate 3D face in real-time.
# It is built upon BFM 2009 model and mediapipe landmark extractor.
# It is authored by ZhenhuiYe ([email protected]), free to contact him for any suggestion on improvement!
from numpy.core.numeric import require
from numpy.lib.function_base import quantile
import torch
import torch.nn.functional as F
import copy
import numpy as np
import random
import pickle
import os
import sys
import cv2
import argparse
import tqdm
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
from data_gen.utils.mp_feature_extractors.face_landmarker import MediapipeLandmarker, read_video_to_frames
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel
from deep_3drecon.secc_renderer import SECC_Renderer
from utils.commons.os_utils import multiprocess_glob
face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM',
camera_distance=10, focal=1015, keypoint_mode='mediapipe')
face_model.to(torch.device("cuda:0"))
dir_path = os.path.dirname(os.path.realpath(__file__))
def draw_axes(img, pitch, yaw, roll, tx, ty, size=50):
# yaw = -yaw
pitch = - pitch
roll = - roll
rotation_matrix = cv2.Rodrigues(np.array([pitch, yaw, roll]))[0].astype(np.float64)
axes_points = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]
], dtype=np.float64)
axes_points = rotation_matrix @ axes_points
axes_points = (axes_points[:2, :] * size).astype(int)
axes_points[0, :] = axes_points[0, :] + tx
axes_points[1, :] = axes_points[1, :] + ty
new_img = img.copy()
cv2.line(new_img, tuple(axes_points[:, 3].ravel()), tuple(axes_points[:, 0].ravel()), (255, 0, 0), 3)
cv2.line(new_img, tuple(axes_points[:, 3].ravel()), tuple(axes_points[:, 1].ravel()), (0, 255, 0), 3)
cv2.line(new_img, tuple(axes_points[:, 3].ravel()), tuple(axes_points[:, 2].ravel()), (0, 0, 255), 3)
return new_img
def save_file(name, content):
with open(name, "wb") as f:
pickle.dump(content, f)
def load_file(name):
with open(name, "rb") as f:
content = pickle.load(f)
return content
def cal_lap_loss(in_tensor):
# [T, 68, 2]
t = in_tensor.shape[0]
in_tensor = in_tensor.reshape([t, -1]).permute(1,0).unsqueeze(1) # [c, 1, t]
in_tensor = torch.cat([in_tensor[:, :, 0:1], in_tensor, in_tensor[:, :, -1:]], dim=-1)
lap_kernel = torch.Tensor((-0.5, 1.0, -0.5)).reshape([1,1,3]).float().to(in_tensor.device) # [1, 1, kw]
loss_lap = 0
out_tensor = F.conv1d(in_tensor, lap_kernel)
loss_lap += torch.mean(out_tensor**2)
return loss_lap
def cal_vel_loss(ldm):
# [B, 68, 2]
vel = ldm[1:] - ldm[:-1]
return torch.mean(torch.abs(vel))
def cal_lan_loss(proj_lan, gt_lan):
# [B, 68, 2]
loss = (proj_lan - gt_lan)** 2
# use the ldm weights from deep3drecon, see deep_3drecon/deep_3drecon_models/losses.py
weights = torch.zeros_like(loss)
weights = torch.ones_like(loss)
weights[:, 36:48, :] = 3 # eye 12 points
weights[:, -8:, :] = 3 # inner lip 8 points
weights[:, 28:31, :] = 3 # nose 3 points
loss = loss * weights
return torch.mean(loss)
def cal_lan_loss_mp(proj_lan, gt_lan, mean:bool=True):
# [B, 68, 2]
loss = (proj_lan - gt_lan).pow(2)
# loss = (proj_lan - gt_lan).abs()
unmatch_mask = [ 93, 127, 132, 234, 323, 356, 361, 454]
upper_eye = [161,160,159,158,157] + [388,387,386,385,384]
eye = [33,246,161,160,159,158,157,173,133,155,154,153,145,144,163,7] + [263,466,388,387,386,385,384,398,362,382,381,380,374,373,390,249]
inner_lip = [78,191,80,81,82,13,312,311,310,415,308,324,318,402,317,14,87,178,88,95]
outer_lip = [61,185,40,39,37,0,267,269,270,409,291,375,321,405,314,17,84,181,91,146]
weights = torch.ones_like(loss)
weights[:, eye] = 3
weights[:, upper_eye] = 20
weights[:, inner_lip] = 5
weights[:, outer_lip] = 5
weights[:, unmatch_mask] = 0
loss = loss * weights
if mean:
loss = torch.mean(loss)
return loss
def cal_acceleration_loss(trans):
vel = trans[1:] - trans[:-1]
acc = vel[1:] - vel[:-1]
return torch.mean(torch.abs(acc))
def cal_acceleration_ldm_loss(ldm):
# [B, 68, 2]
vel = ldm[1:] - ldm[:-1]
acc = vel[1:] - vel[:-1]
lip_weight = 0.25 # we dont want smooth the lip too much
acc[48:68] *= lip_weight
return torch.mean(torch.abs(acc))
def set_requires_grad(tensor_list):
for tensor in tensor_list:
tensor.requires_grad = True
@torch.enable_grad()
def fit_3dmm_for_a_video(
video_name,
nerf=False, # use the file name convention for GeneFace++
id_mode='global',
debug=False,
keypoint_mode='mediapipe',
large_yaw_threshold=9999999.9,
save=True
) -> bool: # True: good, False: bad
assert video_name.endswith(".mp4"), "this function only support video as input"
if id_mode == 'global':
LAMBDA_REG_ID = 0.2
LAMBDA_REG_EXP = 0.6
LAMBDA_REG_LAP = 1.0
LAMBDA_REG_VEL_ID = 0.0 # laplcaian is all you need for temporal consistency
LAMBDA_REG_VEL_EXP = 0.0 # laplcaian is all you need for temporal consistency
else:
LAMBDA_REG_ID = 0.3
LAMBDA_REG_EXP = 0.05
LAMBDA_REG_LAP = 1.0
LAMBDA_REG_VEL_ID = 0.0 # laplcaian is all you need for temporal consistency
LAMBDA_REG_VEL_EXP = 0.0 # laplcaian is all you need for temporal consistency
frames = read_video_to_frames(video_name) # [T, H, W, 3]
img_h, img_w = frames.shape[1], frames.shape[2]
assert img_h == img_w
num_frames = len(frames)
if nerf: # single video
lm_name = video_name.replace("/raw/", "/processed/").replace(".mp4","/lms_2d.npy")
else:
lm_name = video_name.replace("/video/", "/lms_2d/").replace(".mp4", "_lms.npy")
if os.path.exists(lm_name):
lms = np.load(lm_name)
else:
print(f"lms_2d file not found, try to extract it from video... {lm_name}")
try:
landmarker = MediapipeLandmarker()
img_lm478, vid_lm478 = landmarker.extract_lm478_from_frames(frames, anti_smooth_factor=20)
lms = landmarker.combine_vid_img_lm478_to_lm478(img_lm478, vid_lm478)
except Exception as e:
print(e)
return False
if lms is None:
print(f"get None lms_2d, please check whether each frame has one head, exiting... {lm_name}")
return False
lms = lms[:, :468, :]
lms = torch.FloatTensor(lms).cuda()
lms[..., 1] = img_h - lms[..., 1] # flip the height axis
if keypoint_mode == 'mediapipe':
# default
cal_lan_loss_fn = cal_lan_loss_mp
if nerf: # single video
out_name = video_name.replace("/raw/", "/processed/").replace(".mp4", "/coeff_fit_mp.npy")
else:
out_name = video_name.replace("/video/", "/coeff_fit_mp/").replace(".mp4", "_coeff_fit_mp.npy")
else:
# lm68 is less accurate than mp
cal_lan_loss_fn = cal_lan_loss
if nerf: # single video
out_name = video_name.replace("/raw/", "/processed/").replace(".mp4", "_coeff_fit_lm68.npy")
else:
out_name = video_name.replace("/video/", "/coeff_fit_lm68/").replace(".mp4", "_coeff_fit_lm68.npy")
try:
os.makedirs(os.path.dirname(out_name), exist_ok=True)
except:
pass
id_dim, exp_dim = 80, 64
sel_ids = np.arange(0, num_frames, 40)
h = w = face_model.center * 2
img_scale_factor = img_h / h
lms /= img_scale_factor # rescale lms into [0,224]
if id_mode == 'global':
# default choice by GeneFace++ and later works
id_para = lms.new_zeros((1, id_dim), requires_grad=True)
elif id_mode == 'finegrained':
# legacy choice by GeneFace1 (ICLR 2023)
id_para = lms.new_zeros((num_frames, id_dim), requires_grad=True)
else: raise NotImplementedError(f"id mode {id_mode} not supported! we only support global or finegrained.")
exp_para = lms.new_zeros((num_frames, exp_dim), requires_grad=True)
euler_angle = lms.new_zeros((num_frames, 3), requires_grad=True)
trans = lms.new_zeros((num_frames, 3), requires_grad=True)
set_requires_grad([id_para, exp_para, euler_angle, trans])
optimizer_idexp = torch.optim.Adam([id_para, exp_para], lr=.1)
optimizer_frame = torch.optim.Adam([euler_angle, trans], lr=.1)
# 其他参数初始化,先训练euler和trans
for _ in range(200):
if id_mode == 'global':
proj_geo = face_model.compute_for_landmark_fit(
id_para.expand((num_frames, id_dim)), exp_para, euler_angle, trans)
else:
proj_geo = face_model.compute_for_landmark_fit(
id_para, exp_para, euler_angle, trans)
loss_lan = cal_lan_loss_fn(proj_geo[:, :, :2], lms.detach())
loss = loss_lan
optimizer_frame.zero_grad()
loss.backward()
optimizer_frame.step()
# print(f"loss_lan: {loss_lan.item():.2f}, euler_abs_mean: {euler_angle.abs().mean().item():.4f}, euler_std: {euler_angle.std().item():.4f}, euler_min: {euler_angle.min().item():.4f}, euler_max: {euler_angle.max().item():.4f}")
# print(f"trans_z_mean: {trans[...,2].mean().item():.4f}, trans_z_std: {trans[...,2].std().item():.4f}, trans_min: {trans[...,2].min().item():.4f}, trans_max: {trans[...,2].max().item():.4f}")
for param_group in optimizer_frame.param_groups:
param_group['lr'] = 0.1
# "jointly roughly training id exp euler trans"
for _ in range(200):
ret = {}
if id_mode == 'global':
proj_geo = face_model.compute_for_landmark_fit(
id_para.expand((num_frames, id_dim)), exp_para, euler_angle, trans, ret)
else:
proj_geo = face_model.compute_for_landmark_fit(
id_para, exp_para, euler_angle, trans, ret)
loss_lan = cal_lan_loss_fn(
proj_geo[:, :, :2], lms.detach())
# loss_lap = cal_lap_loss(proj_geo)
# laplacian对euler影响不大,但是对trans的提升很大
loss_lap = cal_lap_loss(id_para) + cal_lap_loss(exp_para) + cal_lap_loss(euler_angle) * 0.3 + cal_lap_loss(trans) * 0.3
loss_regid = torch.mean(id_para*id_para) # 正则化
loss_regexp = torch.mean(exp_para * exp_para)
loss_vel_id = cal_vel_loss(id_para)
loss_vel_exp = cal_vel_loss(exp_para)
loss = loss_lan + loss_regid * LAMBDA_REG_ID + loss_regexp * LAMBDA_REG_EXP + loss_vel_id * LAMBDA_REG_VEL_ID + loss_vel_exp * LAMBDA_REG_VEL_EXP + loss_lap * LAMBDA_REG_LAP
optimizer_idexp.zero_grad()
optimizer_frame.zero_grad()
loss.backward()
optimizer_idexp.step()
optimizer_frame.step()
# print(f"loss_lan: {loss_lan.item():.2f}, loss_reg_id: {loss_regid.item():.2f},loss_reg_exp: {loss_regexp.item():.2f},")
# print(f"euler_abs_mean: {euler_angle.abs().mean().item():.4f}, euler_std: {euler_angle.std().item():.4f}, euler_min: {euler_angle.min().item():.4f}, euler_max: {euler_angle.max().item():.4f}")
# print(f"trans_z_mean: {trans[...,2].mean().item():.4f}, trans_z_std: {trans[...,2].std().item():.4f}, trans_min: {trans[...,2].min().item():.4f}, trans_max: {trans[...,2].max().item():.4f}")
# start fine training, intialize from the roughly trained results
if id_mode == 'global':
id_para_ = lms.new_zeros((1, id_dim), requires_grad=False)
else:
id_para_ = lms.new_zeros((num_frames, id_dim), requires_grad=True)
id_para_.data = id_para.data.clone()
id_para = id_para_
exp_para_ = lms.new_zeros((num_frames, exp_dim), requires_grad=True)
exp_para_.data = exp_para.data.clone()
exp_para = exp_para_
euler_angle_ = lms.new_zeros((num_frames, 3), requires_grad=True)
euler_angle_.data = euler_angle.data.clone()
euler_angle = euler_angle_
trans_ = lms.new_zeros((num_frames, 3), requires_grad=True)
trans_.data = trans.data.clone()
trans = trans_
batch_size = 50
# "fine fitting the 3DMM in batches"
for i in range(int((num_frames-1)/batch_size+1)):
if (i+1)*batch_size > num_frames:
start_n = num_frames-batch_size
sel_ids = np.arange(max(num_frames-batch_size,0), num_frames)
else:
start_n = i*batch_size
sel_ids = np.arange(i*batch_size, i*batch_size+batch_size)
sel_lms = lms[sel_ids]
if id_mode == 'global':
sel_id_para = id_para.expand((sel_ids.shape[0], id_dim))
else:
sel_id_para = id_para.new_zeros((batch_size, id_dim), requires_grad=True)
sel_id_para.data = id_para[sel_ids].clone()
sel_exp_para = exp_para.new_zeros(
(batch_size, exp_dim), requires_grad=True)
sel_exp_para.data = exp_para[sel_ids].clone()
sel_euler_angle = euler_angle.new_zeros(
(batch_size, 3), requires_grad=True)
sel_euler_angle.data = euler_angle[sel_ids].clone()
sel_trans = trans.new_zeros((batch_size, 3), requires_grad=True)
sel_trans.data = trans[sel_ids].clone()
if id_mode == 'global':
set_requires_grad([sel_exp_para, sel_euler_angle, sel_trans])
optimizer_cur_batch = torch.optim.Adam(
[sel_exp_para, sel_euler_angle, sel_trans], lr=0.005)
else:
set_requires_grad([sel_id_para, sel_exp_para, sel_euler_angle, sel_trans])
optimizer_cur_batch = torch.optim.Adam(
[sel_id_para, sel_exp_para, sel_euler_angle, sel_trans], lr=0.005)
for j in range(50):
ret = {}
proj_geo = face_model.compute_for_landmark_fit(
sel_id_para, sel_exp_para, sel_euler_angle, sel_trans, ret)
loss_lan = cal_lan_loss_fn(
proj_geo[:, :, :2], lms[sel_ids].detach())
# loss_lap = cal_lap_loss(proj_geo)
loss_lap = cal_lap_loss(sel_id_para) + cal_lap_loss(sel_exp_para) + cal_lap_loss(sel_euler_angle) * 0.3 + cal_lap_loss(sel_trans) * 0.3
loss_vel_id = cal_vel_loss(sel_id_para)
loss_vel_exp = cal_vel_loss(sel_exp_para)
log_dict = {
'loss_vel_id': loss_vel_id,
'loss_vel_exp': loss_vel_exp,
'loss_vel_euler': cal_vel_loss(sel_euler_angle),
'loss_vel_trans': cal_vel_loss(sel_trans),
}
loss_regid = torch.mean(sel_id_para*sel_id_para) # 正则化
loss_regexp = torch.mean(sel_exp_para*sel_exp_para)
loss = loss_lan + loss_regid * LAMBDA_REG_ID + loss_regexp * LAMBDA_REG_EXP + loss_lap * LAMBDA_REG_LAP + loss_vel_id * LAMBDA_REG_VEL_ID + loss_vel_exp * LAMBDA_REG_VEL_EXP
optimizer_cur_batch.zero_grad()
loss.backward()
optimizer_cur_batch.step()
if debug:
print(f"batch {i} | loss_lan: {loss_lan.item():.2f}, loss_reg_id: {loss_regid.item():.2f},loss_reg_exp: {loss_regexp.item():.2f},loss_lap_ldm:{loss_lap.item():.4f}")
print("|--------" + ', '.join([f"{k}: {v:.4f}" for k,v in log_dict.items()]))
if id_mode != 'global':
id_para[sel_ids].data = sel_id_para.data.clone()
exp_para[sel_ids].data = sel_exp_para.data.clone()
euler_angle[sel_ids].data = sel_euler_angle.data.clone()
trans[sel_ids].data = sel_trans.data.clone()
coeff_dict = {'id': id_para.detach().cpu().numpy(), 'exp': exp_para.detach().cpu().numpy(),
'euler': euler_angle.detach().cpu().numpy(), 'trans': trans.detach().cpu().numpy()}
# filter data by side-view pose
# bad_yaw = False
# yaws = [] # not so accurate
# for index in range(coeff_dict["trans"].shape[0]):
# yaw = coeff_dict["euler"][index][1]
# yaw = np.abs(yaw)
# yaws.append(yaw)
# if yaw > large_yaw_threshold:
# bad_yaw = True
if debug:
import imageio
from utils.visualization.vis_cam3d.camera_pose_visualizer import CameraPoseVisualizer
from data_util.face3d_helper import Face3DHelper
from data_gen.utils.process_video.extract_blink import get_eye_area_percent
face3d_helper = Face3DHelper('deep_3drecon/BFM', keypoint_mode='mediapipe')
t = coeff_dict['exp'].shape[0]
if len(coeff_dict['id']) == 1:
coeff_dict['id'] = np.repeat(coeff_dict['id'], t, axis=0)
idexp_lm3d = face3d_helper.reconstruct_idexp_lm3d_np(coeff_dict['id'], coeff_dict['exp']).reshape([t, -1])
cano_lm3d = idexp_lm3d / 10 + face3d_helper.key_mean_shape.squeeze().reshape([1, -1]).cpu().numpy()
cano_lm3d = cano_lm3d.reshape([t, -1, 3])
WH = 512
cano_lm3d = (cano_lm3d * WH/2 + WH/2).astype(int)
with torch.no_grad():
rot = ParametricFaceModel.compute_rotation(euler_angle)
extrinsic = torch.zeros([rot.shape[0], 4, 4]).to(rot.device)
extrinsic[:, :3,:3] = rot
extrinsic[:, :3, 3] = trans # / 10
extrinsic[:, 3, 3] = 1
extrinsic = extrinsic.cpu().numpy()
xy_camera_visualizer = CameraPoseVisualizer(xlim=[extrinsic[:,0,3].min().item()-0.5,extrinsic[:,0,3].max().item()+0.5],ylim=[extrinsic[:,1,3].min().item()-0.5,extrinsic[:,1,3].max().item()+0.5], zlim=[extrinsic[:,2,3].min().item()-0.5,extrinsic[:,2,3].max().item()+0.5], view_mode='xy')
xz_camera_visualizer = CameraPoseVisualizer(xlim=[extrinsic[:,0,3].min().item()-0.5,extrinsic[:,0,3].max().item()+0.5],ylim=[extrinsic[:,1,3].min().item()-0.5,extrinsic[:,1,3].max().item()+0.5], zlim=[extrinsic[:,2,3].min().item()-0.5,extrinsic[:,2,3].max().item()+0.5], view_mode='xz')
if nerf:
debug_name = video_name.replace("/raw/", "/processed/").replace(".mp4", "/debug_fit_3dmm.mp4")
else:
debug_name = video_name.replace("/video/", "/coeff_fit_debug/").replace(".mp4", "_debug.mp4")
try:
os.makedirs(os.path.dirname(debug_name), exist_ok=True)
except: pass
writer = imageio.get_writer(debug_name, fps=25)
if id_mode == 'global':
id_para = id_para.repeat([exp_para.shape[0], 1])
proj_geo = face_model.compute_for_landmark_fit(id_para, exp_para, euler_angle, trans)
lm68s = proj_geo[:,:,:2].detach().cpu().numpy() # [T, 68,2]
lm68s = lm68s * img_scale_factor
lms = lms * img_scale_factor
lm68s[..., 1] = img_h - lm68s[..., 1] # flip the height axis
lms[..., 1] = img_h - lms[..., 1] # flip the height axis
lm68s = lm68s.astype(int)
for i in tqdm.trange(min(250, len(frames)), desc=f'rendering debug video to {debug_name}..'):
xy_cam3d_img = xy_camera_visualizer.extrinsic2pyramid(extrinsic[i], focal_len_scaled=0.25)
xy_cam3d_img = cv2.resize(xy_cam3d_img, (512,512))
xz_cam3d_img = xz_camera_visualizer.extrinsic2pyramid(extrinsic[i], focal_len_scaled=0.25)
xz_cam3d_img = cv2.resize(xz_cam3d_img, (512,512))
img = copy.deepcopy(frames[i])
img2 = copy.deepcopy(frames[i])
img = draw_axes(img, euler_angle[i,0].item(), euler_angle[i,1].item(), euler_angle[i,2].item(), lm68s[i][4][0].item(), lm68s[i, 4][1].item(), size=50)
gt_lm_color = (255, 0, 0)
for lm in lm68s[i]:
img = cv2.circle(img, lm, 1, (0, 0, 255), thickness=-1) # blue
for gt_lm in lms[i]:
img2 = cv2.circle(img2, gt_lm.cpu().numpy().astype(int), 2, gt_lm_color, thickness=1)
cano_lm3d_img = np.ones([WH, WH, 3], dtype=np.uint8) * 255
for j in range(len(cano_lm3d[i])):
x, y, _ = cano_lm3d[i, j]
color = (255,0,0)
cano_lm3d_img = cv2.circle(cano_lm3d_img, center=(x,y), radius=3, color=color, thickness=-1)
cano_lm3d_img = cv2.flip(cano_lm3d_img, 0)
_, secc_img = secc_renderer(id_para[0:1], exp_para[i:i+1], euler_angle[i:i+1]*0, trans[i:i+1]*0)
secc_img = (secc_img +1)*127.5
secc_img = F.interpolate(secc_img, size=(img_h, img_w))
secc_img = secc_img.permute(0, 2,3,1).int().cpu().numpy()[0]
out_img1 = np.concatenate([img, img2, secc_img], axis=1).astype(np.uint8)
font = cv2.FONT_HERSHEY_SIMPLEX
out_img2 = np.concatenate([xy_cam3d_img, xz_cam3d_img, cano_lm3d_img], axis=1).astype(np.uint8)
out_img = np.concatenate([out_img1, out_img2], axis=0)
writer.append_data(out_img)
writer.close()
# if bad_yaw:
# print(f"Skip {video_name} due to TOO LARGE YAW")
# return False
if save:
np.save(out_name, coeff_dict, allow_pickle=True)
return coeff_dict
def out_exist_job(vid_name):
out_name = vid_name.replace("/video/", "/coeff_fit_mp/").replace(".mp4","_coeff_fit_mp.npy")
lms_name = vid_name.replace("/video/", "/lms_2d/").replace(".mp4","_lms.npy")
if os.path.exists(out_name) or not os.path.exists(lms_name):
return None
else:
return vid_name
def get_todo_vid_names(vid_names):
if len(vid_names) == 1: # single video, nerf
return vid_names
todo_vid_names = []
for i, res in multiprocess_run_tqdm(out_exist_job, vid_names, num_workers=16):
if res is not None:
todo_vid_names.append(res)
return todo_vid_names
if __name__ == '__main__':
import argparse, glob, tqdm
parser = argparse.ArgumentParser()
# parser.add_argument("--vid_dir", default='/home/tiger/datasets/raw/CelebV-HQ/video')
parser.add_argument("--vid_dir", default='data/raw/videos/May_10s.mp4')
parser.add_argument("--ds_name", default='nerf') # 'nerf' | 'CelebV-HQ' | 'TH1KH_512' | etc
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--process_id", default=0, type=int)
parser.add_argument("--total_process", default=1, type=int)
parser.add_argument("--id_mode", default='global', type=str) # global | finegrained
parser.add_argument("--keypoint_mode", default='mediapipe', type=str)
parser.add_argument("--large_yaw_threshold", default=9999999.9, type=float) # could be 0.7
parser.add_argument("--debug", action='store_true')
parser.add_argument("--reset", action='store_true')
parser.add_argument("--load_names", action="store_true")
args = parser.parse_args()
vid_dir = args.vid_dir
ds_name = args.ds_name
load_names = args.load_names
print(f"args {args}")
if ds_name.lower() == 'nerf': # 处理单个视频
vid_names = [vid_dir]
out_names = [video_name.replace("/raw/", "/processed/").replace(".mp4","_coeff_fit_mp.npy") for video_name in vid_names]
else: # 处理整个数据集
if ds_name in ['lrs3_trainval']:
vid_name_pattern = os.path.join(vid_dir, "*/*.mp4")
elif ds_name in ['TH1KH_512', 'CelebV-HQ']:
vid_name_pattern = os.path.join(vid_dir, "*.mp4")
elif ds_name in ['lrs2', 'lrs3', 'voxceleb2', 'CMLR']:
vid_name_pattern = os.path.join(vid_dir, "*/*/*.mp4")
elif ds_name in ["RAVDESS", 'VFHQ']:
vid_name_pattern = os.path.join(vid_dir, "*/*/*/*.mp4")
else:
raise NotImplementedError()
vid_names_path = os.path.join(vid_dir, "vid_names.pkl")
if os.path.exists(vid_names_path) and load_names:
print(f"loading vid names from {vid_names_path}")
vid_names = load_file(vid_names_path)
else:
vid_names = multiprocess_glob(vid_name_pattern)
vid_names = sorted(vid_names)
print(f"saving vid names to {vid_names_path}")
save_file(vid_names_path, vid_names)
out_names = [video_name.replace("/video/", "/coeff_fit_mp/").replace(".mp4","_coeff_fit_mp.npy") for video_name in vid_names]
print(vid_names[:10])
random.seed(args.seed)
random.shuffle(vid_names)
face_model = ParametricFaceModel(bfm_folder='deep_3drecon/BFM',
camera_distance=10, focal=1015, keypoint_mode=args.keypoint_mode)
face_model.to(torch.device("cuda:0"))
secc_renderer = SECC_Renderer(512)
secc_renderer.to("cuda:0")
process_id = args.process_id
total_process = args.total_process
if total_process > 1:
assert process_id <= total_process -1
num_samples_per_process = len(vid_names) // total_process
if process_id == total_process:
vid_names = vid_names[process_id * num_samples_per_process : ]
else:
vid_names = vid_names[process_id * num_samples_per_process : (process_id+1) * num_samples_per_process]
if not args.reset:
vid_names = get_todo_vid_names(vid_names)
failed_img_names = []
for i in tqdm.trange(len(vid_names), desc=f"process {process_id}: fitting 3dmm ..."):
img_name = vid_names[i]
try:
is_person_specific_data = ds_name=='nerf'
success = fit_3dmm_for_a_video(img_name, is_person_specific_data, args.id_mode, args.debug, large_yaw_threshold=args.large_yaw_threshold)
if not success:
failed_img_names.append(img_name)
except Exception as e:
print(img_name, e)
failed_img_names.append(img_name)
print(f"finished {i + 1} / {len(vid_names)} = {(i + 1) / len(vid_names):.4f}, failed {len(failed_img_names)} / {i + 1} = {len(failed_img_names) / (i + 1):.4f}")
sys.stdout.flush()
print(f"all failed image names: {failed_img_names}")
print(f"All finished!") |