|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from pytorch3d.implicitron.models.utils import preprocess_input, weighted_sum_losses |
|
|
|
|
|
class TestUtils(unittest.TestCase): |
|
def test_prepare_inputs_wrong_num_dim(self): |
|
img = torch.randn(3, 3, 3) |
|
text = ( |
|
"Model received unbatched inputs. " |
|
+ "Perhaps they came from a FrameData which had not been collated." |
|
) |
|
with self.assertRaisesRegex(ValueError, text): |
|
img, fg_prob, depth_map = preprocess_input( |
|
img, None, None, True, True, 0.5, (0.0, 0.0, 0.0) |
|
) |
|
|
|
def test_prepare_inputs_mask_image_true(self): |
|
batch, channels, height, width = 2, 3, 10, 10 |
|
img = torch.ones(batch, channels, height, width) |
|
|
|
fg_prob = torch.tril(torch.ones(batch, 1, height, width)) * 0.3 |
|
|
|
out_img, out_fg_prob, out_depth_map = preprocess_input( |
|
img, fg_prob, None, True, False, 0.3, (0.0, 0.0, 0.0) |
|
) |
|
|
|
self.assertTrue(torch.equal(out_img, torch.tril(img))) |
|
self.assertTrue(torch.equal(out_fg_prob, fg_prob >= 0.3)) |
|
self.assertIsNone(out_depth_map) |
|
|
|
def test_prepare_inputs_mask_depth_true(self): |
|
batch, channels, height, width = 2, 3, 10, 10 |
|
img = torch.ones(batch, channels, height, width) |
|
depth_map = torch.randn(batch, channels, height, width) |
|
|
|
fg_prob = torch.tril(torch.ones(batch, 1, height, width)) * 0.3 |
|
|
|
out_img, out_fg_prob, out_depth_map = preprocess_input( |
|
img, fg_prob, depth_map, False, True, 0.3, (0.0, 0.0, 0.0) |
|
) |
|
|
|
self.assertTrue(torch.equal(out_img, img)) |
|
self.assertTrue(torch.equal(out_fg_prob, fg_prob >= 0.3)) |
|
self.assertTrue(torch.equal(out_depth_map, torch.tril(depth_map))) |
|
|
|
def test_weighted_sum_losses(self): |
|
preds = {"a": torch.tensor(2), "b": torch.tensor(2)} |
|
weights = {"a": 2.0, "b": 0.0} |
|
loss = weighted_sum_losses(preds, weights) |
|
self.assertEqual(loss, 4.0) |
|
|
|
def test_weighted_sum_losses_raise_warning(self): |
|
preds = {"a": torch.tensor(2), "b": torch.tensor(2)} |
|
weights = {"c": 2.0, "d": 2.0} |
|
self.assertIsNone(weighted_sum_losses(preds, weights)) |
|
|